
Clinical concepts of mental illness have always been modulated by underlying theoretical considerations.  For the past 
fifty years, schizophrenia has been considered primarily a disease of dopaminergic neurotransmission.  Although this 
conceptualization has helped greatly in explaining the clinical effects of psychostimulants and guiding the clinical use 
of both typical and atypical antipsychotics, it has nevertheless shaded how we look at the disorder from both a patho-
physiological and therapeutic perspective.  For example, most explanatory research in schizophrenia has focused on 
dopamine-rich regions of the brain, with little investigation of regions of the brain that are relatively dopamine poor.  
Starting approximately twenty years ago, an alternative formulation of schizophrenia was proposed based upon ac-
tions of the “dissociative anesthetic” class of psychotomimetic agents, including phencyclidine (PCP), ketamine and 
various designer drugs.  These compounds induce psychosis by blocking neurotransmission at N-methyl-D-aspartate 
(NMDA)-type glutamate receptors, suggesting an alternative model for pathogenesis in schizophrenia.  As opposed to 
dopamine, the glutamatergic system is widely distributed throughout the brain and plays a prominent role in sensory 
processing as well as in subsequent stages of cortical analysis.  Glutamatergic theories of schizophrenia, thus, predict 
that cortical dysfunction will be regionally diffuse but process specific.  In addition, NMDA receptors incorporate 
binding sites for specific endogenous brain compounds, including the amino acids glycine and D-serine and the redox 
modulator glutathione, and interact closely with dopaminergic, cholinergic and γ-aminobutyric acid (GABA)-ergic 
systems.  Glutamatergic theories, thus, open new potential approaches for treatment of schizophrenia, most of which 
are only now entering clinical evaluation.
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Introduction 
 Schizophrenia is a severe mental disorder associated 
with both a specific profile of symptoms and a complex pat-
tern of neurocognitive dysfunction.  The first effective treat-
ments for schizophrenia were discovered fortuitously in the 
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Abstract

mid-1950s (1), and were subsequently shown to mediate 
their effects at dopamine (DA) D2 receptors in the mid-
1970s (2, 3).  The DA hypothesis has been the dominant 
neurochemical model of schizophrenia (4) and has proven 
heuristically valuable since that time.  For example, all cur-
rent treatments for schizophrenia mediate their effects via 
blockade of the DA (D2) receptor.  
 Given the limited distribution of DA neurons in the 
brain, schizophrenia was traditionally seen as a disease 
affecting only a few key brain regions.  More recent find-
ings, however, implicate widespread cortical and subcorti-
cal dysfunction, suggesting more generalized etiology. Over 
the past twenty years, attention has turned increasingly to 
dysfunction of the brain glutamate system as a fundamental 
mechanism underlying brain dysfunction in schizophrenia.  
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Glutamate is a widespread neurotransmitter in both cortex 
and subcortical systems and accounts for as many as 60% 
of brain synapses (see [5] for review).  Based on observa-
tions that the N-methyl-D-aspartate (NMDA)-type gluta-
mate receptors antagonists, such as phencyclidine (PCP) or 
ketamine, uniquely reproduce the symptomatic, neurocog-
nitive and neurochemical aspects of the disorder, particular 
emphasis has been placed on NMDA dysfunction as a po-
tential final common pathway leading from pathogenesis to 
symptoms, as reviewed in (6).   

Clinical Phenomenology of 
Schizophrenia 
 Clinicians have grown comfortable dividing symptoms 
of schizophrenia into positive and negative factors, and in 
considering treatment effects on each factor independently 
(7, 8).  Further, Kraeplin’s original conceptualization (9) of 
schizophrenia as a dementia has returned greatly to promi-
nence.  Positive symptoms, while they obviously remain dis-
tressing to a large number of patients and debilitating for 
some, can often be controlled to the point where they do not 
of themselves limit recovery.  
 

 Although subfractionation of the phenomenology 
of schizophrenia is extremely valuable for assessment and 
new treatment development, what is frequently lost is the 
conceptualization of schizophrenia as a syndromal whole.  
Positive and negative symptoms, while independent factors, 
fluctuate in parallel (10) (e.g., improve or worsen in parallel) 
and must be viewed as separate manifestations of the same 
underlying pathogenic mechanisms, rather than as separate 
and distinct nosological entities.  The treatment of positive 
symptoms, such as hallucinations and delusions, is clearly 
important, but may only account for 5% of the variance of 
quality of life (11).  In contrast, most studies have found that 
the persistent disability of schizophrenia often comes from 
negative symptoms and cognitive difficulties (12-15).  In a 
recent analysis, negative symptoms affected interpersonal 
skills independently of other symptoms (16).  Moreover, 
negative symptoms can have an additive effect with neuro-
psychological deficits on overall functioning and, according 
to a meta-analysis, patients with primary negative symp-
toms perform especially poorly on tests of global cognition 
(Cohen’s d=0.52) (17).
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 Accordingly, another key component of schizophrenia 
is neurocognitive dysfunction.  When tested on basic IQ 
tests, such as the Wechsler Adult Intelligence Scale (WAIS), 
patients with established schizophrenia typically score about 
1 standard deviation, or 15 IQ points, below the popula-
tion mean.  While positive symptoms fluctuate in severity 
throughout the course of the illness (see [18] for a review), 
cognitive deficits are typically present at first episode and 
remain relatively constant over the course of the illness (19) 
and see (20) for review.  In studies that have utilized com-
prehensive neuropsychological batteries, similar levels of 
deficit have been observed across multiple neurocognitive 
domains, particularly in learning and declarative memory 
formation (19, 21-23) and not prefrontal “executive” dys-
function per se.  Prevalence of cognitive dysfunction can also 
be estimated using baseline data from the large scale Clinical 
Antipsychotic Trials of Intervention Effectiveness (CATIE) 
schizophrenia study in which, despite cognitive dysfunction 
not being part of the inclusion criteria, the majority of pa-
tients had profound cognitive deficits (21).  Moreover, the 
global composite was significantly correlated with Positive 
and Negative Symptoms Scale (PANSS) negative symptoms 
(r=0.27, p<0.0001), but unrelated to positive symptoms, sug-
gesting both an interrelationship between these core deficits 
and a relative distinction from positive symptoms.   
 While positive symptoms increase dramatically just pri-
or to the first hospitalization (24), prospective, follow-back 
and cross-sectional data suggest that cognitive functioning 
may decline during the three to four years immediately pre-
ceding the onset of schizophrenia symptoms.  For example, 
in one prospective study, poor educational achievement at 
age fifteen was a significant predictor of schizophrenia (25).  
Two follow-back studies have investigated performance on 
standardized educational testing (Iowa test) during child-
hood and adolescence in individuals who subsequently de-
veloped schizophrenia. Compared with the general popu-
lation, such individuals showed only modest deficits even 
when assessed during 4th and 8th grade, but showed a 
marked decline in performance between 8th and 11th grade 
(26, 27).   
 Similarly, individuals with prodromal schizophrenia 
who have not yet converted to psychosis show cognitive 
deficits that are intermediate between those of first-episode 
and control subjects, and such deficits may predict subse-
quent conversion to psychosis (28).  In one study, lower 
than expected IQ at age seventeen—based upon childhood 
reading and spelling abilities—was a significant risk factor 
for schizophrenia but not bipolar disorders, such that indi-
viduals showing a 10 point or greater discrepancy between 
expected and actual IQ showed an approximately twofold 
elevated risk for developing schizophrenia (29).

Over the past twenty years, attention has turned 
increasingly to dysfunction of the brain glutamate 
system as a fundamental mechanism underlying 

brain dysfunction in schizophrenia.
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  It also appears that intellectual performance remains 
relatively constant between age seventeen and subsequent 
illness onset in individuals who go on to develop schizo-
phrenia, suggesting that most of the cognitive decline oc-
curs premorbidly, although further deterioration in some 
domains may be observed (30).  While multiple other factors 
(31, 32), including positive symptoms, also significantly con-
tribute to quality of life and functional impairment, overall, 
these findings highlight neurocognitive dysfunction as a key 
manifestation of schizophrenia that precedes onset of symp-
toms, and must therefore be considered central to etiological 
hypotheses.

Neurochemical Models of 
Schizophrenia
 Neurochemical models of schizophrenia based upon 
DA have had substantial heuristic value in explaining key 
symptoms of schizophrenia; in particular, positive symp-
toms, and in guiding treatment considerations.  Neverthe-
less, significant limitations with regard to the DA hypothesis 
remain. First, few intrinsic deficits have been observed with-
in the DA system to account for the presumed hyperdopa-
minergia associated with schizophrenia (see [6] and [33] for 
reviews).  Second, reconceptualizations of the DA hypothe-
sis propose that subcortical hyperdopaminergia may coexist 
with cortical hypodopaminergia, although mechanisms un-
derlying the differential cortical and subcortical abnormali-
ties remain to be determined (see [34] for review). Finally, 
dopaminergic dysfunction, in general, accounts poorly for 
both symptom classes in schizophrenia and for the pattern 
of neurocognitive dysfunction associated with schizophre-
nia (see [35] for review). Thus, alternative conceptual mod-
els of schizophrenia have been proposed.
 In initial studies with PCP and ketamine in the early 
1960s, it was noted that both agents produced what would 
now be considered positive, negative and cognitive symp-
toms of schizophrenia (see [36, 37] for reviews), although 
no formal rating scales were used.  However, recent stud-
ies in healthy volunteers using scales such as the PANSS or 
the Brief Psychosis Rating Scale (BPRS), or the Scale of As-
sessment of Negative Symptoms (SANS), have documented 
significant increases not only in positive symptoms, but also 
in negative and cognitive symptoms after ketamine adminis-
tration (38-40).  Levels of symptoms during acute ketamine 
challenge, moreover, tend to show a similar pattern across 
factors as they do in schizophrenia. When patients with 
schizophrenia are exposed to ketamine, they also show in-
creases in positive symptoms, as well as negative symptoms 
(41, 42), suggesting that NMDA antagonists affect a brain 
system that is already vulnerable in schizophrenia.  This 
model has been increasingly adopted and is now considered 

to be one of the useful models for both etiological conceptu-
alization of schizophrenia and new treatment development 
(see [43-47] for reviews).
 No objective measures have been developed that ade-
quately differentiate primarily positive from primarily nega-
tive patients.  Because PCP produces negative symptoms 
as prominently or more than positive symptoms, it has oc-
casionally been argued that PCP psychosis should be seen 
primarily as a model for negative-symptom schizophrenia, 
whereas amphetamine or lysergic acid diethylamide (LSD, 
e.g., serotoninergic) psychosis should be seen as a model for 
positive symptoms (48).  However, in PCP- or ketamine-
induced psychosis, the relative proportions of positive and 
negative symptoms are highly similar to those observed in 
both acute and chronic schizophrenia, whereas in amphet-
amine- or LSD-induced psychosis the ratio of positive to 
negative symptoms is far in excess of the pattern observed 
even in acute schizophrenia stages (35, 48). Thus, dopami-
nergic models may be most appropriate to those patients 
with primarily positive symptoms and rapid response to 
antipsychotic; NMDA models may be more appropriate to 
individuals with more balanced positive and negative symp-
toms and poor antipsychotic response, as reviewed in (6).
 Nevertheless, a potentially informative difference be-
tween ketamine-induced symptoms and those of schizo-
phrenia is in the production of hallucinations.  In established 
schizophrenia, auditory hallucinations consisting of voices 
of various types are common, whereas visual hallucinations 
are rare; but during ketamine-induced psychosis, visual 
perceptual distortions are common but organized auditory 
hallucinations are rare.  Therefore, the pattern of hallucina-
tions observed during ketamine challenge does not closely 
resemble the pattern observed in established schizophrenia.  
 

 The pattern of ketamine-induced auditory and visual 
disturbances, however, does resemble the pattern observed 
early in the course in schizophrenia (49, 50), where both 
auditory and visual perceptual disturbances are common, 
and auditory hallucinations have not yet crystallized to the 
point of being identifiable as speech. Additional support for 

Thus, dopaminergic models may be most 
appropriate to those patients with primarily 

positive symptoms and rapid response to 
antipsychotic; NMDA models may be more 

appropriate to individuals with more balanced 
positive and negative symptoms and poor 
antipsychotic response, as reviewed in (6).
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the similarities between early psychosis and glutamatergic 
models comes from imaging studies.  A significant increase 
of glutamine was seen in the anterior cingulate cortex fol-
lowing ketamine administration to healthy human volun-
teers (Rowland et al., 2005), which is similar to the increases 
seen in studies of first-episode (51) and prodromal patients 
(52).  Thus, acute ketamine challenge may be viewed best 
as a model of prodromal or acute incipient schizophrenia, 
rather than later, more chronic, phases.  

Pathological and Genetic Evidence

NMDA in Neurodegenerative and 
Neurodevelopmental Models of 
Schizophrenia
  In addition to producing symptoms and cognitive 
deficits in acute challenge experiments in humans, preclini-
cally, NMDA antagonists lead to neurodegenerative and 
neurodevelopmental changes.  These changes are seen in 
specific populations of cortical pyramidal neurons, particu-
larly in frontal, posterior cingulate and retrosplenial brain 
regions, although delayed spread to larger brain networks 
(e.g., parietal, temporal, entorhinal cortex, hippocampus and 
amygdala) (43, 53).  Neurotoxicity was observed following 
even a single large dose of PCP, although it could also be seen 
following longer duration, lower dose administration (54).  
NMDA receptors are also expressed as well in oligodendro-
cytes (which give rise to myelin), and play a critical role both in 
neurodevelopment and in ischemia-induced damage (55, 56).  

NMDA in Excitotoxicity Models
 NMDA blockade may lead to rebound hyperglutama-
tergia, presumably due to reduced excitatory drive within 
local GABAergic feedback loops.  Because glutamatergic 
transmission is designed to be highly phasic, the elevation 
of tonic glutamate levels is pathological, and leads to impair-
ments in function over and above those induced by NMDA 
blockade itself.  Based upon this theory, the primary goal 
of glutamate-based treatments is neither to increase nor 
decrease NMDA function per se, but rather to restore 
balance between excitation and inhibition within 
cortical regions (57, 58).  Non-neuronal NMDA recep-
tors have also been studied in excitotoxicity models (59), 
but would also predict that a reduction in NMDA receptor 
stimulation would lead to reduced oligodendrocyte growth 
and proliferation during adulthood (60), consistent with the 
observations in schizophrenia.  

Linkage/Association Studies in 
Schizophrenia 
 A consistent finding from genetic studies in schizophre-
nia is that several of the identified genes interact closely with 

glutamatergic mechanisms in general and NMDA receptors 
in particular.  As such, these studies provide additional sup-
port for glutamatergic theories of the disorder.  One of the 
best established candidate genes for schizophrenia is neu-
regulin (NRG1), which might mediate its risk-enhancing 
effects based upon interaction with NMDA receptors (see 
[61] for a review).  D-amino acid oxidase (DAAO), the 
enzyme responsible for D-serine (an NMDA receptor 
modulator) metabolism, has been linked to schizophrenia 
(62), as has the DAAO regulator, D-amino oxidase activator 
(DAOA) (62-66) (see Figure 1).  
 Other potential risk genes for schizophrenia such as 
dysbindin (DTNBP1) (see [67] for review), Disrupted-
in-schizophrenia-1 (DISC-1), and RGS4 may also converge 
on glutamatergic systems (68-70), although further clarifi-
cation of the role of these genes in normal brain function 
is required.  Linkages to metabotropic glutamate receptor 
genes, including GRM3 (71, 72) and GRM7 (73) have also 
been reported.  

Cognitive Deficits Following NMDA 
Antagonist Treatment
 Glutamatergic models provide a framework from which 
to view the pattern of neuropsychological dysfunction asso-
ciated with schizophrenia.  Although glutamatergic systems 
are widespread, within each brain region, NMDA recep-
tors participate in only a subset of processes.  For example, 
NMDA receptor activation is required for the initiation, 
but not maintenance, of long-term potentiation (74).  The 
observation that patients with schizophrenia (as opposed to 
those with the amnestic syndrome) show deficits in memory 
formation (19), but not retention, is thus consistent with an 
NMDA pattern of dysfunction (35, 75-80).
 As with symptoms, initial studies conducted with PCP in 
the early 1960s also showed cognitive deficits that are highly 
reminiscent of schizophrenia (see [37] for review).  Studies 
conducted with ketamine over the last fifteen years have fur-
ther confirmed and extended these findings.  NMDA antag-
onists also reproduce core neuropsychological abnormali-
ties of schizophrenia, including executive functioning (38, 
81-83), attention/vigilance (35, 81, 82, 84-86), verbal fluency 
(38, 77, 87), visual and verbal working memory  (35, 76, 78, 
81, 82, 86-92).  Moreover, in monkeys treated with ketamine, 
characteristic, schizophrenia-like deficits in a task-switching 
paradigm (93, 94) are reproduced.  Ketamine infusion also 
reproduces both the severity and type of thought disorder 
seen in schizophrenia with both, for example, being associ-
ated with high levels of poverty of speech, circumstantial-
ity and loss of goal, and relatively low levels of distractive 
or stilted speech or paraphasias (95).  Given the importance 
of neurocognitive dysfunction to the conceptualization of 
schizophrenia, these findings support the etiological in-
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volvement of NMDA dysfunction in the pathophysiology of 
schizophrenia. 
 As opposed to ketamine, administration of dopaminer-
gic agonists such as amphetamine does not reproduce the 
pattern of deficit observed in schizophrenia. For example, 
in one study that directly compared effects of amphetamine 
and ketamine in normal volunteers, both ketamine and 
amphetamine induced positive symptoms and conceptual 
disorganization. However, only ketamine produced per-
ceptual changes, concrete ideation or negative symptoms. 
Further, only ketamine induced schizophrenia-like disrup-
tions in delayed recall. Finally, amphetamine did not induce 
working memory disturbances, and it significantly reversed 
ketamine-induced disruptions. These findings suggest that 
augmentation, rather than blockade of frontal dopaminergic 
systems, may be beneficial in schizophrenia (35).  
 In schizophrenia, amphetamine treatment does not 
further impair cognition and may, in fact, lead to cognitive 
improvement in schizophrenia (96).  These findings, there-
fore, suggest greater involvement of NMDA, rather than DA, 
receptors in the pathophysiology of cognitive impairment 
in schizophrenia.  Thus, reduction in NMDA functioning 
within the brain could serve as a single unifying feature 
to account for the otherwise complex pattern of deficits 
observed in the disorder.  

NMDA Dysfunction and Sensory 
Processing Impairment
 Another key difference between dopaminergic and 
NMDA models of schizophrenia is the predicted involve-
ment of sensory processing.  As opposed to D2 receptors, 
which are strongly localized to striatum and frontotempo-
ral systems (97), NMDA receptors are diffusely distributed 
throughout brain, with nearly equal representation in both 
lower and higher order brain regions.  Thus, NMDA recep-
tor models suggest that deficits in sensory processing should 
co-exist in schizophrenia with deficits in more complex 
forms of cognition such as memory, attention or working 
memory.  Such deficits were not emphasized in dopaminer-
gic models of schizophrenia.  However, over the past decade, 
such deficits have become increasingly well documented 
and, in several cases, shown to conform to the pattern in-
duced by NMDA antagonists, such as ketamine, in animal 
models and normal volunteers.   Such deficits thus provide 
convergent evidence for NMDA receptor dysfunction in 
schizophrenia. 
 Behavioral and electrophysiological studies of sensory 
dysfunction in schizophrenia have been performed primar-
ily in auditory and visual systems, although schizophrenia is 
known to affect other sensory processes such as weight dis-
crimination (98) and other somatosensory processes (99).  
Because of its high temporal resolution and noninvasive 

nature, the electroencephalogram (EEG) and event-related 
potentials (ERP) are excellent measures of the neurophysi-
ology and early sensory processing of the brain. ERPs are 
standardized reactions of the brain to a particular stimulus, 
and because they index underlying neuronal processes, they 
allow us to look at the basic functioning of the brain and 
the root cause of neuropsychological dysfunction (see [100] 
for a review). These deficits are often highly heritable, stable 
across time and well validated.  
 In the auditory system, one of the strongest indices 
of sensory dysfunction is impaired generation of an ERP 
component termed mismatch negativity (MMN).  MMN is 
elicited by a paradigm in which a sequence of repetitive stan-
dard stimuli is infrequently interrupted by stimuli that dif-
fer in a physical stimulus dimension such as pitch, duration, 
intensity or location.  MMN reflects response of the auditory 
cortex to infrequent changes in a repetitive pattern of audi-
tory stimulation and MMN deficits are well-established  in 
schizophrenia, with a mean effect size of ~1 d across studies 
(101).  Similar deficits in MMN can be induced in animals 
by infusion of PCP (102, 103) and in normal volunteers by 
infusion of ketamine (40).  MMN deficits are associated with 
impaired ability to match tones following brief delay (104).  
Deficits in tone matching contribute significantly to impair-
ments in higher order functions that rely on tone matching 
ability (105), such as the ability to determine emotion based 
upon vocal modulation (prosody), which are thought to be 
rate limiting in terms of functional outcome (106). 

 Similarly, NMDA receptors are located at multiple levels 
of the early visual system, and studies have also investigated 
the consequences of NMDA dysfunction in the early visual 
system.  The early visual system consists of two main compo-
nents: a magnocellular and parvocellular pathway.  The mag-
nocellular pathway, which conducts low-resolution visual 
information rapidly to cortex, is involved in attentional cap-
ture and processing of overall stimulus organization (107).  
In contrast, the parvocellular pathway, which is primar-
ily involved in processing fine-grained stimuli and object 
recognition, is relatively intact.  NMDA receptors may be 
particularly important in the magnocellular pathway (108).  
 Early visual processing deficits include Visual P1 (109-
111), a measure that reflects responses within the magno-
cellular pathway and has been shown to predict community 
outcome (112, 113).  Further, deficits in early visual process-

These findings suggest that augmentation, 
rather than blockade of frontal 

dopaminergic systems, may be beneficial 
in schizophrenia (35).
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ing produce subsequent impairments on higher order pro-
cesses such as object identification (114), motion processing 
(115), reading (116) and illusion sensitivity (117).  Change in 
the physical properties of stimuli can lead to significant im-
provement in performance in such high-level tasks such as 
the Wisconsin Card Sorting Test (118).  Thus, as evidenced 
by associations between these NMDA-dependent early 
auditory and visual processes and higher order function-
ing, deficits in NMDA activity within sensory regions may 
lead to impairment in more complex processes (see [119] for 
review).

Glutamate-DA and Glutamate-GABA 
Interactions
 NMDA dysfunction may also account for both the im-
paired dopaminergic regulation and the impaired GABAer-
gic neurotransmission that has been documented in schizo-
phrenia.  Positron emission (PET) and single photon emission 
(SPECT) tomographic studies provide insights into patterns 
of neurochemical receptor dysfunction in schizophrenia.  
Patients with schizophrenia, as a group, show enhanced DA 
release to amphetamine challenge, consistent with endog-
enous dopaminergic hyperactivity/dysregulation (see [120] 
for review).  The enhanced release, however, is observed 

specifically during acute decompensation, and not during a 
remission phase, and is associated specifically with increased 
severity of positive symptoms.  Based upon these findings, 
it has been suggested that dopaminergic instability may 
account only for the increased severity of symptoms associ-
ated with acute decompensation (33).  In normal volunteers, 
pretreatment with ketamine leads to dopaminergic dysregu-
lation similar to that observed in schizophrenia (121), even 
under conditions where no effect on basal DA release is 
observed.  Similar augmentation of amphetamine-induced 
DA release is observed in rodents treated with NMDA an-
tagonists (122-124).  A primary site of NMDA appears to be 
local inhibitory interneurons within key brain regions (125).  
These serve as a “brake” on glutamate-stimulated DA release 
(126).  Thus, failure of this brake may lead to dysregulated 
DA release of the type observed in schizophrenia.  
 Changes in GABAergic neurotransmission have also 
been increasingly well documented over recent years (127-
131).  GABAergic dysfunction may be directly linked to 
well-documented deficits in working memory function, and 
may, therefore, represent an appropriate target of pharmaco-
logical intervention (132).  There is also evidence for NMDA 
receptors modulating their regulation of DA in part through 
presynaptic GABAB and on DA terminals (133).   

Figure 1     Schematic Model of the NMDA Receptor Complex and Synaptic
       Glutamate         , D-serine        , and Glycine         , Regulation and 
       Metabolism. (The non-physiologic NMDA antagonist PCP and
        ketamine site is also shown.) 
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NMDA-Based Treatments
 A critical issue is whether treatment approaches based 
upon glutamatergic and NMDA models can lead to new 
treatment approaches.  Over the past decade, several new 
treatment strategies have been proposed.  First, direct and 
indirect approaches have targeted the glycine modulatory 
site of the NMDA receptor complex (see Figure 1).  Direct 
agonists have included treatment with the naturally occur-
ring amino acids glycine and D-serine, which serve as en-
dogenous modulators of NMDA receptors in vivo, as well 
the antituberculosis drug D-cycloserine, which fortuitously 
cross-reacts with the NMDA/glycine site (see [134] for a re-
view).  These agents have proven effective in several preclini-
cal models, including reversal of PCP effects in both rodents 
(135, 137) and primates (137).  
 A potential indirect approach is to use glycine type I 
(GlyT1) transport inhibitors (GTIs).  Rather than serving as 
direct glycine precursors, these compounds function simi-
larly to selective serotonin reuptake inhibitors (SSRIs) and 

increase glycine levels in the brain by preventing glycine 
removal from the synaptic cleft, leading to endogenous in-
creases in CSF glycine levels (138) (see Figure 1).  An initial 
study with glycyldodeclamide, a relatively low-affinity agent, 
demonstrated significant reversal of PCP-induced hyperac-
tivity in rodents (139, 140).  Since then, the naturally occur-
ring sarcosine has shown preliminary effectiveness, and high 
affinity GTIs have been synthesized by several pharmaceuti-
cal companies, and have shown to be effective in multiple 
animal models.  Several of these compounds are currently in 
early-stage clinical trials, with results expected over the next 
several years.
 Other treatment strategies have been proposed utili-
lizing nonglycine modulatory sites of the NMDA receptor.  
One involves examination of the redox-sensitive site on the 
NMDA receptor.  This site is modulated by the oxidized 
form of glutathione (GSH) (141, 142).  Schizophrenia has 
also been shown to be associated with reduced levels of 
GSH (143-145), leading to potential dysfunction of NMDA 
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Figure 2     Summary of Clinical Trials Performed to Date with Full NMDA Agonists 
       Combined with Antipsychotics other than Clozapine 

Further details about individual studies are provided in reference #134. CONSIST refers to the 
Cognitive and Negative Symptoms in Schizophrenia Trial (169). Statistics were calculated as 
weighted average of % change scores for negative symptoms, across trials.
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receptors (146).  Early studies testing this mechanism have 
utilized N-acetylcysteine, a glutathione precursor, as a 
potential psychopharmacological agent.  
 Another treatment possibility, based upon the obser-
vation that NMDA blockade leads to rebound increases 
in glutamate release that may themselves be pathological 
(147), proposes that compounds that inhibit presynaptic 
glutamate release may also be therapeutic (148).  Examples 
of such compounds include the antiepilepsy drug lamotrig-
ine (88) and agonists of metabotropic glutamate type 2/3 
(mGluR2/3) receptors (57, 149), which have been shown to 
be effective in reversing behavioral effects of NMDA antago-
nists in human and rodent models supporting the potential 
efficacy of these compounds as novel antipsychotic agents.  
Other metabotropic ligands, including mGluR5 (150, 151) 
and mGluR8 (152) agonists, have also been proposed as po-
tential treatments for schizophrenia based upon their abil-
ity to modulate NMDA receptor-mediated neurotransmis-
sion (153).  N-acetylaspartylglutamate (NAAG) may be an 
endogenous ligand for mGlu2/3 receptors in CNS.  NAAG 
has been tested preclinically and shown to inhibit NMDA 
antagonist-induced behaviors in animals, consistent with 
an effect on NMDA receptor-mediated neurotransmission 
(154, 155).  

Results of Clinical Studies
 The most studies to date have been performed with 
NMDA agonists, primarily because several of the agents 
used have been natural compounds, and so it has not been 
necessary to wait for structure activity optimization or pre-
clinical toxicity testing (see Figure 2).  As permeability of 
these agents may be limited, delivering optimal doses, there-
fore, may be impossible (135).  Nevertheless, positive studies 
with these compounds have provided proof-of-concept for 
development of compounds with higher affinity and speci-
ficity. 
 Studies with naturally occurring compounds to date 
have primarily used glycine, administered at a dose of up 
to 800 mg/kg (approx. 60 g/d) (156-159); D-serine, admin-
istered at a dose of 30 mg/kg (approx. 2.1 g/d) (160, 161) 
or D-alanine, administered at a dose of 100 mg/kg (162); 
and, sarcosine, administered at a dose of 30 mg/kg (approx. 
2.1 g/d) (163, 164).  For glycine, this represents the highest 
practical dose because of the quantity of amino acid needed 
to significantly increase brain glycine levels.  Most recently, 
high dose D-serine (>60 mg/kg) was shown to be more ef-
ficacious than lower doses in treating neurocognitive deficits 
(165). For other compounds, formal dose findings studies 
have not been performed, and maximum tolerated doses are 
presently unknown.
 Overall, NMDA-based treatments appear to be effi-
cacious in schizophrenia.  A meta-analysis conducted in 

2005 (166) concluded that in the first 132 patients stud-
ied with NMDA allosteric modulators, a highly significant 
(p=0.0004), moderate effect size improvement in negative 
symptoms was observed across studies.  A more recent me-
ta-analysis (167), which included 312 patients, continues to 
suggest a moderate effect size, highly significant improve-
ment in negative symptoms (p<0.001).  Variability in find-
ings across studies was related primarily to degree of pla-
cebo effect within individual trial, with all studies showing 
a consistent, 15 to 20% improvement in negative symptoms 
within the experimental group.  
 One study has evaluated effects of open-label glycine in 
individuals showing prodromal symptoms of schizophrenia.  
In that study, large effect-size improvement was observed, 
including early remission in 3 of 10 subjects (168).  These 
data, if confirmed by double-blind trials, would indicate that 
NMDA agonists might have potential utility in the schizo-
phrenia prodrome. 

Summary
 Glutamatergic models of schizophrenia were first pro-
posed over two decades ago, based upon the effects of the 
agents PCP and ketamine, which were shown to induce their 
unique psychotomimetic effects by blocking neurotransmis-
sion at NMDA-type glutamate receptors.  Since that time, 
glutamatergic models have been strongly supported by 
NMDA antagonist studies in animals, as well as ketamine 
challenge studies in humans.  Over that time, potential mo-
lecular contributors to NMDA dysfunction have been in-
creasingly documented.  New treatment approaches based 
upon glutamatergic approaches are only now reaching the 
clinical trial stage, and will serve to further elucidate and 
refine these models over upcoming years.  Glutamatergic 
approaches offer particular hope for treatment of negative 
symptoms and cognitive deficits in schizophrenia and, thus, 
for improvement of the clinical situation of millions of pa-
tients worldwide.
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