
Introduction: The Gyrification Index (GI) represents the degree of cortical folding and is of special interest in schizo-
phrenia, since alterations in cortical folding indirectly reflect white matter development and axonal connectivity un-
derneath. To the best of our knowledge, very few studies have investigated the effect of sex on GI in schizophrenia. 
Differences in the GI between patients with schizophrenia and healthy controls and the relation between sex, age 
symptoms and duration of illness with GI were investigated. Methods: T1-images were acquired from schizophrenia 
patients (24 males [SZ-M] and 24 females [SZ-F]) and healthy volunteers (24 males [NC-M] and 24 females [NC-F]) 
matched for age, sex and handedness. GI analyses were performed using the fully automated CIVET pipeline. Results: 
Significantly lower GI was found in patients relative to controls bilaterally in frontal, temporal, and parietal cortex. Sex 
differences were found: negative correlation was found between the duration of illness and the right parietal GI and 
right occipital GI in SZ-M, while SZ-F was found in the left frontal and bilateral temporal GI. Patients, regardless of sex, 
showed positive correlations between negative symptoms and GI in the right occipital. NC-F had greater GI values than 
SZ-F and both male groups. Conclusions: Since GI reflects, in part, alterations in cerebral development and connectiv-
ity, the decrease in GI observed in patients is in agreement with the neurodevelopmental model of disconnectivity in 
schizophrenia; in addition, we emphasize the importance of sex differences in schizophrenia.  
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Abstract

Introduction
        The last couple of decades have witnessed a boom in 
the development of sophisticated methods of investigating 
brain structure and function, but a great deal of work still 
lies ahead in order to unravel the neurobiological mecha-
nisms underlying schizophrenia (1-4). Numerous brain re-
gions have been implicated in the pathophysiology of this 
genetically and behaviorally complex disorder, suggesting 
that schizophrenia is not caused by any focal brain abnor-
mality, but results from disturbed interactions between 
brain regions. In this regard, Friston and Frith (1995) (5) 
have advanced that the core pathology of schizophrenia is an 
impaired neuromodulation of synaptic plasticity, leading to 
abnormal functional integration of neural systems. One way 
to assess this theory is to measure cortical folding, which re-
flects cortico–cortical connectivity, in addition to the intra-
cortical organization (6). This cortical folding is measured 
through the Gyrification Index (GI). 
 The Gyrification Index (GI) represents the degree of 
cortical folding by calculating the ratio of the entire inner 
cortical contour of the brain to that of the exposed outer sur-
face contour. An increase in the GI index is thus correlated 
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 Harris et al. (2007) (19) used an automated gyrification 
measure in the frontal lobe to compare between schizophre-
nia patients (14 males and 11 females) and patients with 
mental retardation and healthy controls. Schizophrenia pa-
tients had reduced gyrification; however, the authors report 
no significant effect of sex on Gyrification Index. Similarly, 
Cachia et al. (2008) (21) investigated local sulcal index in 
schizophrenia patients (10 females and 20 males) with hal-
lucination in comparison with healthy controls. Reductions 
were significant in the superior temporal sulcus bilaterally in 
the left middle frontal sulcus, with no significant main effect 
of sex on the results.
 More recently, Palaniyappan et al. (2012) (24) per-
formed gyrification analyses in a group of 57 schizophrenia 
patients (50 males), and a second time after exclusion of the 
7 female subjects; the authors report reductions in left in-
sula, the superior temporal gyrus, caudal superior temporal 
and inferior parietal regions. However, the exclusion of the 
female subjects did not change the results. The authors rec-
ommended caution in the interpretation of these results and 
pointed out that studies with equal male/female ratios are 
needed.
 The aim of the present study was threefold: 1) to investi-
gate differences in the GI between patients with schizophre-
nia and healthy controls; 2) to investigate the main effects of 
sex on the GI in larger samples of patients; and, 3) to investi-
gate the main effects of age and duration of illness on the GI. 
Based on previous studies, we hypothesized that: 1) patients 
will have lower GI than healthy controls; 2) female patients 
will show less deficit than male patients relative to the same-
sex controls (this hypothesis is based on several reports of 
more structural brain abnormalities in males than in females 
with schizophrenia diagnosis (25-30); 3) the GI will show 
deterioration with age, which will be more pronounced in 
schizophrenia patients; and, 4) in addition, the duration of 
illness will be associated with lower GI.  

Methods
     

Participants
 A total of 96 subjects were included in the present study. 
Inclusion criteria for the schizophrenia group were a DSM-
IV (31) diagnosis of schizophrenia with no medical or neu-
rological diseases and no concomitant Axis-I or Axis-II dis-
orders. Forty-eight schizophrenia patients (24 males [SZ-M] 
and 24 females [SZ-F]) and 48 healthy volunteers (24 males 
[NC-M] and 24 females [NC-F]) participated in the study 
after signing a detailed informed consent approved by the 
local scientific and ethics committees.
 Schizophrenia patients and healthy controls were 
matched for age, sex, and handedness (32). SZ-M: 

to an increase in the number and complexity of gyri (7). In 
1991, Armstrong et al. (8) stated that change in this gyrifi-
cation reflects aspects of the morphological development of 
the cortical layer. Developmentally, gyrification takes place 
following the completion of neuronal migration during the 
gestation period (9). The greatest increase in GI values oc-
curs between 22 and 42 weeks of gestation (10). The Gyrifi-
cation Index stabilizes shortly after birth and appears to be 
stable thereafter, even in the presence of atrophic processes 
affecting gray and white matter at a later age (10).
 The Gyrification Index is of special interest in schizo-
phrenia, since alterations in cortical folding indirectly reflect 
white matter development and axonal connectivity under-
neath (10, 11). Results of gyral folding (using GI) in healthy 
population derive mainly from postmortem studies (7, 10, 
12). For example, Zilles et al. (1988) (7) measured the GI 
bilaterally in the brains of 25 males and 36 females without 
apparent neurological diseases. The GI was greatest in the 
prefrontal and parieto-temporal cortex, and no significant 
sex differences in the GI were observed.  
 Very few studies have attempted to investigate GI in 
schizophrenia patients (13-16) and those that did focused 
mainly on the frontal lobe.  These studies reported both 
greater (15, 17) and lower gyral complexity (18, 19). A study 
by Sallet et al. (2003) (20) and Palaniyappan et al. (2011) 
(16) reported global reductions, but with fluctuating region-
al increases in right anterior prefrontal cortex and bilateral 
frontomarginal regions. Harris et al. (2004) (15) compared a 
larger sample (n=34) of first-episode patients to healthy con-
trols (n=36) and assessed the prefrontal, temporal, parietal, 
and occipital lobes. The authors found a trend toward re-
duction in the left prefrontal region but significant increases 
were observed in the right temporal regions. These struc-
tural abnormalities may provide insight into differences in 
schizophrenia symptomatology (14, 20, 21). 
 Very few studies have investigated the effect of sex on 
GI measures in schizophrenia (20, 22, 23). Only the study by 
Vogeley et al. (2000) (23) found an effect of sex and diagno-
sis on the degree of gyral folding. Vogeley et al. conducted 
the study on postmortem brains of patients with schizophre-
nia (n=24) and healthy controls (n=24) using gyrification 
measures, specifically in the prefrontal region. The authors 
found a significant effect of diagnosis-by-sex interaction 
on the GI in the right prefrontal, where male patients had 
higher GI in comparison to healthy men, while no signifi-
cant difference was observed in the female groups. A second 
study by Highley et al. (2003) (22) performed gyrification 
measures on frontal, temporal, parietal and occipital regions 
in 61 (21 female) patients with schizophrenia in comparison 
with 42 healthy controls (21 females). The authors found no 
effect of diagnosis or sex on the degree of folding. 
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mean=31.25 years, SD=7.97; NC-M: mean 33.50 years, 
SD=8.69, p=.355; SZ-F: mean=33.04 years, SD=8.38; NC-
F: mean=29.92 years, SD=7.15, p=.171. No significant dif-
ferences between groups were found in the parental socio-
educational status (SZ-M: mean=2.82, SD=0.61; NC-M: 
mean=2.32, SD=1.12; SZ-F: mean=2.63, SD=1.06; NC-F: 
mean=2.18, SD=1.13, p=.183) as assessed by the National 
Occupational Classification (NOC) (33) on a scale ranging 
from 1 to 4. There were no significant differences between 
male and female patients in either mean duration of ill-
ness or dose of antipsychotic medication in chlorpromazine 
equivalence. Patients were stabilized on one or more atypical 
antipsychotic. The effects of antipsychotic medications on 
GI were considered through estimation of chlorpromazine 
dose equivalents (34). Patients with DSM-IV (31) criteria of 
affective, schizoaffective and schizophreniform psychosis 
were excluded from the study. Patients with past or pres-
ent neurological or Axis-I psychiatric disorder, alcoholism 
or drug abuse were also excluded. Control participants were 
screened with the non-patients edition of the Clinical In-
terview for DSM-IV (SCID) (35). Symptoms severity was 
rated according to the Positive and Negative Syndrome Scale 
(PANSS) (36). Handedness was evaluated with the Edin-
burgh Inventory (32) (see Table 1). Illness onset was defined 
as the date of “first consultation” at the hospital. 

Magnetic Resonance Imaging 
Acquisition 
 Individual high-resolution co-planar anatomical imag-
es were acquired (three-dimensional, spoiled gradient echo 
sequence; slices=176, slice thickness=0.98 mm, TR=19 ms, 
TE=4.92 ms, flip angle=25°, matrix 256 x 256 voxels) on an 
MRI Siemens TRIO system at 3.0 Tesla, which is operational 
at the University of Montreal Geriatric Institute. 

Adham Marïe-Mancini et al.

Magnetic Resonance Imaging Analysis
Gyrification Index Preprocessing
 Gyrification index analyses were done using the fully 
automated CIVET pipeline, which consists of 18 steps. 
For details please see references (37-42) and the follow-
ing link: http://www.nitrc.org/plugins/mwiki/index.php/
neurobureau:CIVETPipeline. 

Gyrification Index Measurement
 An intermediate cortical surface, halfway between the 
inner and outer CLASP (Constrained Laplacian Anatomic 
Segmentation using Proximity) surfaces, was used for mea-
suring the surface morphometrics, as it represents a relative-
ly unbiased representation of both sulcal and gyral regions 
(43). The cortical area was calculated in the whole hemi-
sphere and each lobar region by summing the Voronoi area 
based on geodesic distances over the folded topology of the 
surface (44). The middle cortical surface was divided into 
the sulcal and gyral regions by thresholding the depth map 
(i.e., 3D Euclidean distance from each vertex to the nearest 
voxel on the convex hull volume (45). The threshold of the 
depth map was determined from the fact that the human 
cerebral cortex is a highly folded sheet with 60–70% of its 
surface area buried within folds (7, 46). The mean GI was 
defined as the ratio between the total surface area and the 
superficially exposed surface areas such as the gyral regions 
in each hemisphere and lobe (7). Please see Figure 1 as an 
example.

Statistical Methods and Analysis
 We used the unified statistical approach to deforma-
tion-based morphometry applied to the cortical surface 
(47), which is specifically performed when using age and 
gender as covariates. The cerebral cortex has the topology 
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Table 1   Clinical Assessments in Schizophrenia Patients

Age (years)

Duration of illness (years)

Age of onset (years)

PANSS positive score

PANSS negative score

PANSS general score

PANSS total score

Chlorpromazine equivalence (mg/day)

Men
Mean (SD)

31.25 (7.96)

11.04 (10.63)

21.47 (4.78)

17.083 (5.76)

16.12 (4.45)

36.96 (7.11)

70.92 (13.92)

542.29 (372.09)

Range

20–49

2–25

14–35

8–29

10–26

25–54

46–107

100–1,500

Women
Mean (SD)

33.04 (8.38)

8.04 (7.55)

25.83 (7.37)

19.62 (7.49)

20.79 (7.69)

42.41 (12.66)

82.83 (26.08)

438.71 (276.35)

Range

21–51

1–27

18–48

9–34

9–39

24–72

41–140

66–1,100

P Value

0.452

0.265

0.021

0.194

0.038

0.072

0.05

0.279
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of a 2D highly convoluted sheet. As the brain develops over 
time, the cortical surface area, thickness, curvature, and total 
GM volume change. It is highly likely that such age-related 
surface changes are not uniform. By measuring how such 
surface metrics change over time, the regions of the most 
rapid structural changes can be localized. We avoided us-
ing surface flattening, which distorts the inherent geometry 
of the cortex in our analysis and is only used in visualiza-
tion. To increase the signal-to-noise ratio (SNR), diffusion 
smoothing—which generalizes Gaussian kernel smoothing 
to an arbitrary curved cortical surface—has been developed 
and applied to surface data (2D smoothing). As an illustra-
tion, our group has demonstrated how this new surface-
based morphometry can be applied in localizing the corti-
cal regions of the gray matter tissue growth and loss in the 
brain images longitudinally collected in a group of children 
and adolescents. Further studies (48, 49) stated that each of 
the segmentation, thickness computation, and surface reg-
istration procedures are expected to introduce noise in the 
thickness measure. To counteract this, data smoothing was 
used to increase the signal-to-noise ratio (SNR) and the sen-
sitivity of statistical analysis. For analyzing data in 3D whole 
brain images, Gaussian kernel smoothing is widely used, 
which weights neighboring observations according to their 
3D Euclidean distance. 

 In the present study, however, the data lie on a 2D sur-
face so the smoothing must be weighted according to dis-
tance along the surface. This method is adopted to reduce 
the noise in the thickness measure, especially when co-
varying with age and gender. Diffusion smoothing, that 
smooths data on an explicit 2D cortical surface representa-
tion, is based on the observation that, in Euclidean space, 
Gaussian kernel smoothing is equivalent to solving an iso-
tropic diffusion equation. This diffusion equation can also 
be used on the surface manifold to increase the SNR. This is 
done to reduce noise and to overcome problems caused by 
neuroanatomic variability within the gender and age groups. 
In addition, mixed-model regression, which accounts for 
missing data, irregular intervals between measurements, 
and within-person correlation, was used to examine the de-
velopmental trajectories (50). The threshold for statistical 
significance was set at an α of 0.05. Correction for multiple 
comparisons was needed to control the false-positive rate. 
All statistical thresholds were determined by application of 
the false discovery rate (FDR) technique controlling proce-
dure for multiple comparisons. This approach is reported to 
be effective for the analysis of neuroimaging data (51).
 A factor analysis (or “diagnostic group”) diagnosis-x-
gender was performed for variables revealing significance for 
the GI. Then analysis of covariance (ANCOVA), with mean 

Low Gyrification Index (GI)

High Gyrification Index (GI)

Left GI=2.096

Right GI=2.125

Left GI=2.490

Right GI=2.466

Figure 1  Example of High and Low Gyrification Index    
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GI as the dependent variable with separate analyses for the 
left and right hemispheric, in addition to each lobe GI, was 
performed according to a general linear model corrected for 
multiple comparisons. A series of univariate ANOVAs were 
subsequently performed according to the general linear 
model. Regression analyses were also performed, using GI 
as the dependent variable and age, symptomatology and du-
ration of illness as regressors. Potential interactions between 
regressors and diagnosis and sex were tested. Analyses were 
performed using the SPSS 17 software.  Type I error was con-
trolled by adopting Bonferroni corrections at p<0.05.

Results
Psychiatric Assessments
 T-test analyses showed a significant difference in nega-
tive and total PANSS scores and age of onset between males 
and females with schizophrenia, but no differences were 
found in medication or illness duration (see Table 1).  

Gyrification Index
Results by Hemisphere
 The independent sample t-test showed a significant 
main effect of group on the right hemisphere GI (t=2.723, 
p=.008) and left hemisphere GI (t=2.127, p=.037), such 
that the patient group exhibited lower GI compared to the  

Figures 2A and 2B show more rapid decrease in GI bilaterally with progressive age in the patient group com-
pared to controls. (A) represents Group-by-Age interaction in the right hemisphere regression GI (r2=.121, 
β=-.347, t=-3.592, p=.001); (B) represents Group-by-Age interaction in the left hemisphere GI (r2=.104, 
β=-.323, t=-3.311, p=.001).

Controls R2 Linear=0.058
Patients R2 Linear=0.212
Fit line for total R2 Linear=0.121
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Age

Figure 2A  Representing Group x Age Interaction 
                       in the Right Hemisphere

Figure 2B    Representing Group x Age Interaction in the Left Hemisphere

Group

1 Controls

2 Patients

Fit line for Total

1

2

Controls R2 Linear=0.091
Patients R2 Linear=0.121
Fit line for total R2 Linear=0.104
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Figure 3A  Representing Age x Sex Interaction on the Right Hemisphere
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Figures 3A and 3B show that males with schizophrenia had greater GI reductions bilaterally, yet more pronounced in 
the right hemisphere with progressive age compared to females with schizophrenia. (A) represents Age x Sex interac-
tion on the right hemisphere GI (r2=.212, β=-.461, t=-3.523, p=.001); (B) represents Age x Sex interaction in the left 
hemisphere GI (r2=.121, β=-.348, t=-2.514, p=.016).
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Figure 3A   Representing Age x Sex Interaction in the Right Hemisphere

Sex
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Fit line for Total

Men

Women

Men R2 Linear=0.374
Women R2 Linear=0.098
Fit line for total R2 Linear=0.212

Figure 3A   Representing Age x Sex Interaction in the Right Hemisphere
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Figure 3B   Representing Age x Sex Interaction in the Left Hemisphere
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Men
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Fit line for total R2 Linear=0.121
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control group. Based on previous findings, second-level 
ANOVA was performed on the female and male groups sep-
arately. There was a significant main effect of group in males 
on the right hemisphere GI (t=2.545, p=.018), and only a 
trend on the left hemisphere GI (t=1.947, p=.058), where 
SZ-M showed a significantly lower GI compared to control 
males. No main effect of group was observed in females. 

Regression and General Linear Model 
Analyses with Hemispheres
 General linear model revealed a Group-by-Age inter-
action in the GI of the right (F[1,95]=2.221, p=0.019) and 
left hemisphere (F[1,95]=2.239, p=0.018), such that the di-
agnosis of schizophrenia affected the rate of GI lost with age. 
The direction of this interaction was such that increased age 
correlated with lower GI in the right hemisphere and in the 
left hemisphere GI (see Figure 2A and 2B), with more rapid 
decrease in GI bilaterally with progressive age in the patient 
group compared to controls. 
 The examination of patients revealed an Age x Sex  
interaction in the right and left hemisphere GI, showing 
that males with schizophrenia had greater GI reductions 
bilaterally, yet more pronounced in the right hemisphere 
with progressive age compared to females with schizophre-
nia (see Figure 3A and 3B). Furthermore, an interaction 
was observed between duration of illness and sex (r2=.244,  
β=-.494, t=-3.856, p=.0001), demonstrating a greater de-
crease in GI in the right hemisphere with the duration of 

Table 2   Lobar Gyrification Index Measures

Left

Frontal 

Temporal

Parietal 

Occipital

Right

Frontal 

Temporal

Parietal 

Occipital

NC-M
Mean (SD)

2.4366 (0.1137)

2.7597 (0.1817)

3.0085 (0.1717)

2.0797 (0.1578)

2.4473 (0.1261)

2.6461 (0.1639)

3.0525 (0.1375)

2.2532 (0.1317)

NC-F
Mean (SD)

2.5341 (0.1060)

2.8517 (0.1777)

3.090 (0.1813)

2.117 (0.1702)

2.5287 (0.0978)

2.7402 (0.1581)

3.100 (0.1408)

2.3101 (0.1525)

SZ-M
Mean (SD)

2.3904 (0.1302)

2.7055 (0.1782)

2.9730 (0.1795)

2.0565 (0.1511)

2.3986 (0.1135)

2.5912 (0.1372)

3.0095 (0.1437)

2.1942 (0.1393)

SZ-F
Mean (SD)

2.4139 (0.1181)

2.6929 (0.1769)

2.9463 (0.1373)

2.1097 (0.1607)

2.4355 (0.1324)

2.5525 (0.1758)

3.0081 (0.1793)

2.2556 (0.1513)

NC-M=healthy male volunteers; NC-F=healthy female volunteers; SZ-
M=male schizophrenia patients; SZ-F=female schizophrenia patients.

Left frontal

Right frontal

Left temporal

Right temporal

Left parietal
SZ-F

SZ-M

NC-M

NC-F

Figure 4     Represents Higher GI in Female Controls in Comparison to Male Controls 
                       and Both Groups of Patients

illness only in males with schizophrenia. There were no 
significant correlations found between hemispheric GI and 
symptoms in either group or patients.

Results by Lobe
 The independent sample t-test between patients and 
controls showed significant differences in the left frontal 
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lobe GI (t=3.358, p=.001), left temporal (t=2.902, p=0.005) 
and left parietal GI (t=2.596, p=0.011), the right frontal lobe 
GI (t=2.886, p=0.005), the right temporal lobe GI (t=3.672, 
p=0.001) and right parietal lobe GI (t=2.198, p=0.030), such 
that the patient group exhibited lower GI compared to the 
control group. ANOVA was performed for the 4 groups: NC-
M, SZ-M, NC-F and SZ-F. Differences between groups were 
significant in the left frontal (F[1,95]=6.949, p=0.001) where 
NC-F had higher GI than NC-M (p=0.030), SZ-M (p=0.001) 
and SZ-F (p=0.004); in the left temporal (F[1,95]=3.924, 
p=0.011) where NC-F had higher GI than SZ-M (p=0.034) 
and SZ-F (p=0.016); in the left parietal (F[1,95]=0.021, 
p=0.023) where NC-F had higher GI than SZ-F (p=0.023); in 
the right frontal (F[1,95]=5.165, p=0.002) where NC-F had 
higher GI compared to SZ-M (p=0.001) and SZ-F (p=0.046); 
in the right temporal (F[1,95]=6.263, p=0.001) where NC-F 
showed higher GI than SZ-M (p=0.01) and SZ-F (p=0.001) 
(see Figure 4).

Regression Analyses with Lobes
 Regression analyses revealed a negative correlation 
between the duration of illness and the right parietal GI 
(r2=0.166, β=-0.407, t=-2.092, p=0.048) and right occipi-
tal GI (r2=0.183,  β=-0.427, t=-2.218, p=0.037), such that 
male patients show more rapid decrease in GI. Women 
showed more rapid decrease in the left frontal GI (r2=0.306,  
β=-0.553, t=-3.115, p=0.005), left temporal GI (r2=0.211,  
β=-0.459, t=-2.422, p=0.024) and right temporal GI 
(r2=0.280, β=-0.529, t=-2.927, p=0.008). 
 Regression analyses between symptoms and GI per-
formed in patients regardless of sex showed positive cor-
relation between negative symptoms and the right occipital 
GI (r2=0.170, β=0.398, t=3.064, p=0.004). SZ-M showed 
negative correlations in the left occipital GI with negative 
symptoms (r2=0.221, β=-0.470, t=-2.495, p=0.021), while 
SZ-F showed positive correlations between negative symp-
toms and the right occipital GI (r2=0.230, β=0.479, t=2.561, 
p=0.018). 

Discussion
 The main findings of the present study are: 
 1) significant lower values of the overall GI and in indi-
vidual lobes in schizophrenia relative to normal controls; 
 2) significant lower values of the GI in the right hemi-
sphere in schizophrenia males relative to the same-sex con-
trols (no difference between female groups);  
 3) GI values decrease with age in healthy controls (with 
no sex difference) and in patients (greater in males than in 
females), with a more progressive deterioration in the right 
hemisphere in schizophrenia; 
 4) significant GI values decrease with the duration of 
illness in schizophrenia males but not in schizophrenia females; 

 5) patients showed significantly lower GI in bilateral 
frontal, bilateral temporal, and bilateral parietal compared 
to controls;  
 6) female controls had greater GI values than schizo-
phrenia females and both male groups in the left frontal; 
greater values than both patient groups in the bilateral tem-
poral and right frontal; and greater values in the left parietal 
compared to females with schizophrenia; 
 7) negative correlation was found between the duration 
of illness and the right parietal GI and right occipital GI in 
male patients; 
 8) female patients had a negative correlation between 
the duration of illness and the left frontal and bilateral tem-
poral GI; 
 9) in all patients, positive correlations were found be-
tween negative symptoms and GI in the right occipital; 
      10) male patients showed negative correlations in the left 
occipital GI with negative symptoms; and,  
      11) female patients showed positive correlations between 
negative symptoms and the right occipital GI.

 These findings point to abnormalities in the morpho-
logical development of the cortical layer in schizophrenia. 
These alternations were generalized bilaterally in the frontal, 
temporal and parietal cortex, and in concordance with pre-
vious structural findings in the literature (21, 52, 53).  Taking 
into consideration two facts—1) GI values reach their max-
imum during the first years of life and decrease gradually 
during childhood and 2) the gyrification pattern is mostly 
completed at birth, yet the sulco-gyral folds continue to de-
velop until early adulthood (10)—we advance that neuro-
developmental brain changes may be present at the onset of 
the illness (25, 30, 54-59), with further changes occurring 
during progression of schizophrenia (54, 60-63), specifical-
ly in males (54, 64). The finding of sex difference in the GI 
in schizophrenia is consistent with several reports of more 
neuroanatomical abnormalities in males relative to female 
patients. For example, Narr et al. (2001) (65) found a Sex-
by-Diagnosis interaction with schizophrenia males showing 
a greater loss of superior temporal sulcal slope asymmetry 
in the right hemisphere than schizophrenia females. In addi-
tion, the authors found greater variability in the longitudinal 
fissure, reflecting both larger sulci and larger cerebrospinal 
fluid space in males relative to female patients. In a different 
study, Bullmore et al. (1995) (28) showed a global reduction 
in the right hemisphere radius of gyrification in males but 
not in females with schizophrenia. Similar structural sex dif-
ferences have been found in volumetric and cortical thick-
ness studies (25-27, 29, 30). 
 In addition to sex difference in the GI in schizophrenia, 
we have found a significant decrease in GI values with the 
duration of illness. Decreases were seen in the right parietal 
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and right occipital lobes in men. Women patients, on the 
other hand, showed decreases mostly in the left hemisphere 
(left frontal and temporal, and right temporal). Indeed, sev-
eral studies have shown a progressive decrease in global 
brain measurements associated with illness duration (66, 
67), specifically in frontal (68, 69) and temporal lobes (66, 
68); however, the present study is, to the best of our knowl-
edge, the first report of sex differences in GI taking into con-
sideration the duration of illness.
  The overt clinical expression of some psychiatric and 
neurodevelopmental disorders may be a reflection of an 
underlying abnormality in growth of cortical convolutions 
(70). Hence, it is plausible that the significant decrease in 
the GI observed in schizophrenia is related to the disease 
itself. Nevertheless, we found only an association between 
occipital GI and negative symptoms; in addition there was 
sex difference where female patients with more negative 
symptoms also had greater GI in the right occipital cortex, 
and male patients who had greater negative symptoms had 
lower GI in the left occipital cortex. A study by Onitsuka et 
al. (2007) (71) showed a relation between reduced volumes 
in the visual association areas and hallucinations. Their 
study included only male schizophrenia patients. Bijanki et 
al. (2015) (72) reported an association between increased 
white matter fractional anisotropy in the occipital lobe and 
increased score on the Scale for the Assessment of Negative 
Symptoms (SANS) in schizophrenia patients. The authors 
did not report any sex differences. Of relevance is a study by 
Mitelman et al. (2003) (73) showing that patients with nega-
tive symptoms and poorer outcome had significantly lower 
gray matter volumes in the temporal and occipital lobes 
compared to better outcome patients and healthy controls. 
 At this point, it is of important relevance to note that 
abnormalities in GI in our group of schizophrenia patients 
in comparison to healthy controls were not the same regions 
that correlated with schizophrenia clinical symptoms as 
measured by the PANSS. We postulate that cognitive deficits 
play a role in such discrepancy. Several studies have shown 
abnormalities in these regions in relation with deficits in 
mental rotation abilities (74), IQ performance (75), lan-
guage processing (76), and face recognition (77).
 Along this line of evidence, Jou et al. (2005) (78) dem-
onstrated abnormalities in cortical gyrification in individu-
als at increased genetic risk of schizophrenia (i.e., not pre-
senting the full schizophrenia symptomatology).  
 Interestingly, female controls had greater GI values than 
schizophrenia females and both male groups in the left fron-
tal; greater values than both patient groups in the bilateral 
temporal and right frontal; and, greater values in the left pa-
rietal compared to females with schizophrenia. Similar find-
ings were reported by Luders et al. (2006) (79). In this study, 
the authors found increased gyrification in frontal, parietal, 

temporal, and occipital regions in healthy females compared 
to healthy males.
 While previous findings investigating GI in schizophre-
nia (20, 22, 23) did not find any significant sex difference in 
our study, decreased GI was observed in different regions 
in schizophrenia males relative to control males, and in fe-
males with schizophrenia compared to control females. Fur-
thermore, sex differences were observed in regions showing 
lower GI in association of age as well as illness duration, 
which in itself suggests a differential neuropathological 
process implicated in male and female patients. Palaniyap-
pan et al. (2011) (24) showed a strong negative correlation  
between age and Gyrification Index in schizophrenia in gen-
eral without reference to sex, suggesting a higher degree of 
age-related morphometric changes in patients. However, 
to our knowledge, this is the first study to report such sex  
differences in relation to age and duration of illness. 
 Several elegant hypotheses have been proposed to 
explain sex differences in the schizophrenia brain. On one 
hand, Crow et al. (2008) (80) suggested that sex differenc-
es related to psychosis are attributed to a genetic species- 
specific variation related to a locus on the X and Y chromo-
somes. Gene expression in this region is influenced by the 
degree of X and Y chromosomes pairing in male meiosis—a 
process referred to as “MSUC” (meiotic suppression of un-
paired chromosomes), which normally would lead to a more 
rapid mean rate of lateralization in females than in males 
(this in turn relates to the higher incidence rate of language 
delays and dyslexias in males). This complex theory posits 
that language disturbances are integral to psychosis. Later-
alization or cerebral torque (where the right frontal lobe is 
larger than the left, while the left occipito-temporo-parietal 
is larger than the right) is due to the development of neural 
connections associated with language: from right to left in 
relation to motor speech output and from left to right in rela-
tion to speech perception. Disturbance in this neural devel-
opment was proposed as the basis of the genetic predisposi-
tion to psychosis (i.e., the authors suggest that schizophrenia 
is a result of an abnormal cerebral lateralization associated 
with the emergence of language in humans). When this hy-
pothesis is considered in the context of brain structures, it 
may explain the higher levels of anomalies found in males 
compared to female patients in our study and the differences 
in the development of schizophrenia in males and females 
in general (81). 
 On the other hand, the influence of sex steroid hor-
mones has also been considered (82, 83). These studies 
strongly suggest that the neuroprotective effects of estrogen 
(which influences sexual characteristics, development of the 
brain aminergic networks, and the ability to adapt to stress-
ful events) enhance the vulnerability threshold for psychosis 
by the dopamine downward regulation. Such mechanism 
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may explain the later onset and the more positive course of 
female schizophrenia. In this vein, an amalgam of research 
has been proposed to explain the presence of significant 
brain structure abnormalities in schizophrenia males in 
comparison to normal control males and schizophrenia fe-
males, such as greater enlargement of the lateral and third 
ventricles and decreased frontal and temporal lobe volumes 
(84, 85) and disease progression (86-88). With regards to 
the latter, Riecher-Rossler et al. (1994) (89, 90) and Hafner 
(2003) (87) found that increased levels of estrogen in females 
with schizophrenia with normal menstrual cycles were sig-
nificantly associated with lower schizophrenia symptoms, 
suggesting that estrogen had "a weak neuroleptic-like effect 
on schizophrenia symptoms." 
 Because cortical gyrification is an important marker of 
cerebral development (10), we investigated the relationship 
between GI and age in our 96 subjects. We found a more 
pronounced decrease in GI with age in schizophrenia pa-
tients relative to healthy controls. Cortical convolution is 
influenced by the degree of thalamo-cortical connections 
(11). Hence, it is interesting to note the significant nega-
tive correlation between the GI and the duration of illness. 
Indeed, various studies have implicated thalamo-cortical 
connections in the pathophysiology of schizophrenia (91-
93). Based on the preceding arguments, we suggest that the 
negative correlation observed in the present study reflects 
the long-term instability in information processing and the 
failure of associative mental processes across the years of ill-
ness in schizophrenia. 
 This study is limited by the use of the GI only. Further 
studies should investigate GI along with cortical thickness 
in order to have a better estimate of gray matter density. We 
emphasize that our results are preliminary and that larger 
studies are necessary to confirm our findings. Notwith-
standing these limitations, there are two major differences 
between the present technique and other contemporary im-
age analysis methods, which add to our confidence in in-
terpreting the data: first, we used a completely automated 
method to assess GI. An advantage of an automated method 
is that rater error is not a factor and is corrected for multiple 
threshold.  Second, we first used the MNI_AutoReg, which 
performs a 9-parameter, linear registration to the registra-
tion target model in order to later bring native (original raw) 
images into MNI-Talairach space. Then during the 16th 
stage of the Civet pipeline “non-linear surface registration” 
stages—where the cortical surfaces are produced—they 
need to be aligned with the surfaces of other brains in the 
data set so cortical morphology data could be compared 
across subjects. Following this, Surfreg performs a non-
linear registration of the surfaces to a pre-defined template 
surface. These steps are crucial to resampling in native space, 

which is essential when working with schizophrenia brains. 
Note that while the vertices have been aligned, the topologi-
cal measurements associated with them (e.g., GI) remain 
unchanged in this process. Finally, as gyrification decreases 
in both healthy controls and patients, it becomes a much 
more ambiguous marker as it is difficult to isolate factors 
of gyrification decline with healthy aging and even more so 
with disease (confounded by disease progression, different 
behavioral factors, and substance/medication exposure). For 
instance, future research capturing cortical folding measures 
prior to or at the time of disease onset may help clarify what 
brain effects are due to early development versus secondary 
effects of disease.
 In essence, we reported significant sex differences in GI 
decreases in schizophrenia, which correlated negatively with 
age and the duration of illness. Since alterations in cerebral 
development and connectivity may be observed by GI, we 
advance that this decrease is in accord with the agreed upon 
neurodevelopmental hypothesis of disconnectivity (5). In 
conclusion, we emphasize the importance of sex differences 
in schizophrenia.  
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