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Meningeal Lymphatic Vessels and Glymphatic System 
in Neurocysticercosis: A Systematic Review and Novel 
Hypotheses 

Abstract
Background: Neurocysticercosis (NCC) is an eradicable and preventable zoonotic parasitic neurological disease caused by the infection of the larva form of pig tapeworm 
Taenia solium, causing headaches and epileptic seizures most seen in developing countries worldwide. When the cysticercus is dying in the Central Nervous System (CNS), 
many pro-inflammatory elements are realized to participate in the immune response. The primary aid of this article is to look at how waste products from this process are 
removed from the CNS to the periphery through the Meningeal Lymphatic Vessel (MLV) and the Glymphatic System (GS) supported by Aquaporin 4 (AQP4) and Corpora 
Amylacea (CA). To answer our research question, we conducted a systematic review of the medical literature (never done before) and delivered some hypotheses for each 
situation.

Methods: We searched the medical literature comprehensively, looking for published medical subject heading (MeSH) terms like "NCC and lymphatic CNS", "meningeal 
lymphatic vessels", "glymphatic system",; OR "NCC/MLS/GS"; OR "waste removal in NCC"; OR "MLS/GS/Epilepsy;" OR "MLS/GS/neuroparasitology"; OR "Zoonosis and 
brain LS."

Results: From the total publication, 34 studies were peer-reviewed, and only one discusses issues related to epilepsy and MLV/GS. NCC/MLV/GS studies were reported 
within the selected review period.

Comments and concluding remarks: We propose a mechanism for clearance of waste metabolic products from cysticercus' destruction, immune response, apoptosis of 
the neurons, and supporting cells at the CNS in the different stages of NCC supported by MLV, GS, AQP4 and CA. As far as we know, this is the first review made on this 
topic reported to the medical literature.
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Introduction

Cysticercosis is a preventable zoonosis and eradicable parasitic 
disease secondary to a cestode infection by the larva form of tapeworm 
Taenia solium (Ts), most seen in people living in developing countries. 
When the cysticercus is in the cerebral parenchymal, intraventricular 
system, Subarachnoid Space (SAS), cerebellum, brainstem, optic nerve, 
or spinal cord, then it has named Neurocysticercosis (NCC), and the often-
clinical manifestations are headache and epileptic seizures/epilepsy among 
other less frequent symptoms and signs. Epilepsy is present in 70-90% of 
infected cases, and almost all patients respond very well to praziquantel or 
albendazole as antiparasitic medication and first-line anti-epileptic drugs. 
We have investigated many aspects of NCC over the past twenty years, 
including those related to other associated infectious diseases, and most 
of our results have been published. Therefore, other interested people can 
access this information easily [1-9]. In this study, our central aid is to review 
the relationship between the NCC and the meningeal lymphatic vessels, 
the glymphatic system, and Aquaporin 4 (AQ4) and to propose novel 
hypotheses on this issue [10-19].

For many years, has been considered that the brain is an immune-
privileged organ due to the presence of Blood-Brain-Barrier (BBB), 
Cerebrospinal Fluid (CSF)-brain barrier, among others modulating the 
relocation of immune cells and based on the lack of Central Nervous System 
(CNS) drainage [20,21]. Today is well known that lymphangiogenesis is 

associated with pathological processes like tissue repair, tumour growth 
and inflammation, followed by a paradigm shift supported by the discovery 
of Meningeal Lymphatic Vessels (MLVs) in the CNS. MLVs and those 
lymphatic vessels located along the dural sinuses primarily absorb CSF from 
the adjacent SAS and brain Interstitial Fluid (ISF) through the glymphatic 
system, composed of AQ4 water channels expressed on perivascular 
astrocytic end-feet membranes.

It is well known that the Cerebrospinal Fluid (CSF) and the Interstitial 
Fluid (ISF) are the main components of the fluids in the Central Nervous 
System (CNS). For many years, the medical community believed the CSF 
(ultrafiltrate of blood plasma) was only secreted in the ventricular system 
by the choroid plexus. We also believed that after travelling through the 
ventricular system and the SAS, the CSF is reabsorbed by the subarachnoid 
villi and drained into the superior sagittal sinus and from here to the general 
venous circulation. Today is well known that other places produce CSF, like 
ependymal cells of the Ventricular System (VS) and the Subarachnoid Space 
(SAS) (20%), and the mechanism of absorption occurs at different levels, 
including the nasal lymphatic vessels [22] and along some extensions of 
the brain like olfactory, optic nerves and spinal nerves routes where the 
Meningeal Lymphatic Vessels (MLV) are present. However, the more critical 
function of the CSF is to protect the CNS (shock absorption and buoyancy), 
to keep the homeostasis and accumulation of waste products. On top of that, 
the CSF may re-enter the cortex from large arteries/arterioles by dispersion 
and from the ventricles enter to the periventricular directly by pulsating flow 
modulated by changes of the diastolic and systolic arterial pressure along 
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the Virchow-Robin space plus pia and the glia limitans (perivascular space) 
[23-26].

15%-20% of the total brain parenchymal is composed of the ISF 
filling the extracellular space [25]. The main composition of the ISF is 
neurotransmitters which are relevant to keep the isotonicity of the CNS' 
cellular microenvironment plus proteins, ions, and peptides [23]. It is 
known that the source of the ISF is the secretion processes at the BBB 
[22]. As reported in a previous publication, the relationship between the 
oncotic and hydrostatic pressure (Starling's forces) [27] controls the BBB 
exudates under pathological circumstances when the protein in serum can 
get the brain. Other authors confirmed that the ISF's movement through the 
extracellular space is possible by diffusion and convection mechanisms, 
although the contribution of each one to the process and the estimation 
of the quantities of CSF and ISF to be mixed/exchanged remain unknown. 
However, it has been proved that different brain regions exhibit different 
diffusion patterns (increased in areas close to the ventricles and depth 
of the cortical layers [26,28]. At least three different pathways for ISF 
drainage have been identified: Through the ependymal cells located in 
the wall of the VS, the Virchow-Robin space (perivascular) at the brain's 
surface parenchymal, and the basement membrane at the wall of the blood 
vessel [29-32]. There are different places for clearance of the brain's waste, 
according to some authors, for example: draining solutes from the brain 
parenchymal occurs from the perivascular pathways into the deep cervical 
Lymphatic Nodes (dcLNs), whereas CSF's waste from the SAS and the 
ventricular system drain to the superficial Cervical Lymph Nodes (sCLNs) 
and dcLNs. Therefore, changes in the mechanisms of CFS-ISF drainage for 
whatever reason will cause brain waste accumulation causing neuroimmune 
reactions [32-35].

Historically, the first communication related to the Lymph Nodes (LN) 
was made in hieroglyphs (around 1600 BC) by ancient Egyptians, and The 
Alexandrian School and the Hippocratic School delivered the functions of 
the lymphatic system and a better description of the LN. Lymph, named 
after the Roman goddess "Lympha", means fresh water, was discovered by 
the ancient Greeks. Lymphatic glands, which are today called lymph nodes, 
were mentioned in a collection of writings that date to 300 to 500 [36]. Other 
investigators delivered more information about the LS, such as Andreas 
Vesalius (1543) through his masterpiece 'de Humani corporis fabric. In 
1622, Gaspare Aselli reported "several thin and beautiful white cords" 
in dogs. Years later, Frederik Ruysch (1638–1731) published his finding 
from anatomical dissection on executed convicts reporting the anatomical 
features of the valves in the LV and the direction of lymphatic flow.

The lymphatic system (including the lymphatic vessels and nodes) was 
described from 1652 to 1653 by both Swedish (Olaus Rudbeck) and Danish 
(Thomas Bartholin) physicians. Thirteen years later, Marcello Malpighi in 
Italy reported the lymphatic function in the spleen, and Paolo Mascagni 
described with illustration all lymphatic networks around 1784 [36]. The first 
communication regarding the presence of lymphatic vessels in the brain 
was published in 1787 by Mascagni, a lecturer of anatomy in Siena, Italy. 
In 1837, J. E. Purkinje (anatomy-physiologist) reported the presence of 
granular bodies in the brain of elderly peoples [37] and Virchow (1854) made 
a better description of these bodies named corpora in Latin [38]. In 1869, 
Schwalbe and collaborators discovered that tracers injected intrathecally 
can be seen later in the LN [39]. Schwalbe was the first to suggest that 
intrathecally injected tracers appeared in the lymph nodes in 1869. Six 
years later, Key and Retzius documented the relationship between the 
nasal mucosa and the CSF space [40]. At the same time (1875), He and 
colleagues found that the main route of the brain ISF flow is the Persistent 
Vegetative State (PVS) which Bruce and Dawson highlighted in 1900 after 
reviewing all available information about spinal lymphatic spaces. At the 
same time, Bruce and Dawson reviewed the available information on spinal 
lymphatic spaces [41]. For a long time has been suggested that lymphatic 
drainage happens through some cranial nerves at the exit of the brain 
connecting the CFS space and the peripheral LS. Between 1874 and 1990, 
other authors reported that the lymph space discharged into the PVS while 
the lymph moved out to the spinal cord's periphery [42]. Around 1910, Mott 

and collaborators announced the presence of lymphatic sheath surrounding 
the cerebral blood vessels as a continuation of the adventitia delineated 
by the pia mater covering the neural tissue leading to fusiform cells. In the 
human meningeal layers (dura mater) investigations, LV was described for 
the first time in 1987 by Andres and collaborators [43]. It has been confirmed 
by Aspelund and colleagues [44] and Louveau et al. [45]. During this period, 
the phrases prevascular, perivascular, and paravascular were introduced 
to named brain lymphatics. In 1992, Cserr and collaborators established 
that "a new view of nervous system immunology incorporates permanent 
and highly controlled communication between the immune system and the 
CNS" after describing the drainage of the CSF via outflow pathways through 
some cranial nerves and spinal nerve roots [46]. Some relevant discoveries 
reported between 1990 and 2005 improved our comprehension of the 
cellular immune reaction in the CNS based on the remarkable role played 
by the Intercellular Adhesion Molecule-1 (ICAM-1) over the migration of 
T cells within the nervous system. The same investigators postulated the 
theory that neutralizing antibodies to ICAM-1 and Lymphocyte Function-
Associated Antigen 1 (LFA1) impair the capacity of T cells to cross 
endothelial barriers in the brain [47,48].

Before mentioning other historical aspects, it is important to clarify some 
issues on the before- mentioned Lymphocyte Function-Associated Antigen 
1 (LFA1), which is part of the integrin superfamily of adhesion molecules 
present on leukocytes mainly on lymphocytes playing an important role in 
the process of emigration where the leukocytes abandon the blood flow 
to penetrate the nervous tissues, mediates firm arrest of leukocytes, and 
participate in the process of cytotoxic T cell modulating the killing process 
of granulocytes and monocytes over antibodies. Since 2007, LFA-1 has 
six known ligands such as ICAM1, ICAM2, ICAM3, ICAM4, ICAM5, and 
JAM-A (Junctional Adhesion Molecule-A). It is well known that LFA-1/ICAM-
1 interactions can stimulate signalling pathways influencing the process 
of T cell differentiation [49]. Recently, other authors performing Magnetic 
Resonance Imaging (MRI) studies in patients looking for clearance pathways 
in vivo after administration of intrathecal contrast material confirmed that the 
parasagittal dura next to the superior sagittal sinus act as a bridge between 
CSF in the brain parenchyma and the Meningeal Lymphatic Vessels (MLV) 
[50]. On the other hand, in anatomopathological studies done on two 
people who died by self- inflicted hanging, some authors found a very high 
elevated number of T cells along the afferent branches of the trigeminal 
nerve compared to two people who died due to a drug overdose and car 
accident, respectively. These results support the postulate of directional 
movement of the lymphocyte T cells within the nerve blocked after neck 
local compression (strangulation) [51,52].

In animal studies, the before-mentioned waste clearance system, 
referred to as the glymphatic system of the CNS, was discovered in 2012. 
In 2017, the glymphatic system was first described in the human brain, 
simultaneously with the first documentation of the meningeal lymphatic 
network. In addition, other reports on radiological lymphography, MRI, 
lympho scintigraphy, near-infrared fluorescence lymphography, and 
dynamic contrast-enhanced MR lymphangiography studies brought novel 
information on LS [36].

Last year, Mezey and collaborators performed an immunological 
study of lymphatic elements in the CNS, and they analysed samples of 
the trigeminal system present at the lateral wall of cavernous sinus-cavum 
trigeminal where they found CD3-positive T lymphocytes around ganglionic 
cells plus large nerves bundles all over like between the fascicles, under 
the epineurium and perineurium and even in the endoneurial space being 
all positive for lymphatic markers and the adhesion molecules (ICAM1). 
These investigators hypothesize that T lymphocytes move in these spaces 
engaging in surveillance of the brain's environment. They also postulated 
that this movement is modulated by the synchronized function of adhesion 
molecule modulated by epithelial cells and its cognate ligand LFA1 created 
by immune cells leading to a slow circulation of immune elements along 
the nerves in the PVCs. These cells are pushed by the movement of the 
ISF/CSF around the blood vessels or by the endoneurial fluids movements 
through the fibres of cranial nerves and spinal nerves and travelling from 
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the MLV at the base of the skull or directly from the brain to cervical lymph 
nodes through the cribriform plate and the nasal mucosa [53-59].

Finally, we arrive at the last period of CNS lymphatic investigations with 
novel results like the confirmation of a functional flowing LS in the brain 
identified by specific lymphatic endothelial markers and the discovery of the 
Glymphatic System (GS), which is composed of the perivascular tunnels 
lined by the feeding process of astrocytes at the level of the BBB. The 
main components of GS are the paravenous ISF efflux channel, the para-
arterial CSF influx channel, and the water channel Aquaporin-4 (AQP4) in 
astrocytes connecting the influx and efflux channels [60-63]. It has been 
documented that CSF moves through the PVSs of brain arteries toward 
the PVSs around the venous system pushing the waste elements into 
the venous sinus system and SAS [64]. The exact direction of the waste 
movement has been described using structural MRI by Ramirez et al. These 
authors describe the clinical consequences secondary to the dysfunctional 
movement of waste products [65] and the role of the cavernous sinus in the 
absorption of CSF as well [66]. Recently, lymphatic endothelial markers like 
Podoplanin (PDPN) and Lymphatic Vessel Endothelial hyaluronan receptor 
1 (LYVE1) have been investigated through human brain pathological 
studies, and the results confirmed that waste products move from the 
brain IS (Immune System) space to the periphery despite the presence of 
a neurological condition or not. In all cases, CD3-positive T lymphocytes 
were present in the lymphatic spaces nearest to lymphatic markers [56]. 
It was preceded by other investigator's results who employed multiplex 
immunostainings (tyramide signal amplification) and performed Polymerase 
Chain Reaction (PCRs) to localize the markers employed and to document 
the presence of the mRNA to encode them in one of the samples used for 
immunocytochemistry [57]. Altogether, support the previous postulate on 
fluid movement in the spaces in pathological and healthy humans brain. 
The findings obtained by Mezey et al. [56] confirmed the before-mentioned 
composition of the perivascular space by endothelial cells with the same 
expression of the peripheral lymphatic endothelial cells markers (LYVE1, 
podoplanin, VEGF3 (Vascular Endothelial Growth Factor 3), and Prox1 
(Prospero Homeobox 1), a transcription factor). Podoplanin (PDPN) and 
LYVE1 are glycoproteins; the first belongs to the mucin- type protein family, 
and the last is a type I belonging to the integral membrane. They are the 
primary markers (LYVE1/PDPN) - positive cells found all over the brain, and 
both can stain similar cells, although the antigens have different intracellular 
distributions. VEGFR3 (Vascular Endothelial Growth Factor Receptor 3) 
were positive on the same cell while this antibody stained many others, and 
these cells were positive for lymphatic markers surrounding all vascular 
cross-sections [67]. In many regions of the human brain have been found 
perineural and endoneurial staining in cross/longitudinal sections of nerve 
bundles surrounding satellite cells of the trigeminal ganglion, in the blood 
vessel in the SAS, dura mater, pia mater, and in the adventitia of the large 
blood vessels [56].

Other novel historical issues in the acquisition of knowledge on CNS 
LS are based on lymphogenesis. Now it is well known the LS arises from 
cells budding off the cardinal veins (anterior and posteriors ones) during the 
embryogenesis, building up the initial lymphatic network and is also known 
that those capillaries (lymphatic) are very thin-walled vessels composed 
of a single layer of lymphatic endotheliocytes without covering by Smooth 
Muscle Cells (SMC), basement membrane or pericytes with blind ends 
which function is the drainage of fluids [68-70]. Contrary to the histological 
aspect of the endothelial cells of the capillary vessels and their continuous 
connection, the Lymphatic Capillary Vessels (LCV) have specific intercellular 
and intermittent connections, which are typically characterized by Parallel 
Linear Sections (PLS) of vascular endothelial protein cadherin [68,70]. 
The gap between these PLS allows the passive passage of fluids and 
macromolecules direct to the lumen of the vessels [71-74]. Another recent 
discovery is the presence of the protein angiopoietin 2 as one of the essential 
components of LCV structure [68]. Since 2012, has been established that 
LCV is connected to neighbouring tissue by anchor filaments attached to the 
interstitial collagen fibres (fibrillin and emilin-1). These filaments participate 
actively in the mechanism for drainage of the excess extracellular fluids 

and raise the interstitial pressure stretching the connective tissue fibres 
leading to an increase in the LCV's diameter and fixing endothelial 
cells and damaged filaments. If these mechanisms fail, it can cause LS 
dysfunction like lymphatic leakage, lymphatic drainage disorders and 
lymphedema. Obviously, at this level, lymphatic endotheliocytes and blood 
play a relevant role in the mechanisms of new vessel formations after being 
externally stimulated by growth factors or cytokines [71-74].The accuracy 
of serological investigations for the diagnosis of neurocysticercosis was 
confirmed in our setting a long time ago [75]. Recently, we recommended a 
novel approach for patients presenting epilepsy and NCC with associated 
COVID-19; we also hypothesized on the pathogenesis of seizures, NCC 
and cytokine release syndrome and the role played by gut microbiota over 
the medulla oblongata/ hypothalamus-pituitary-adrenal axis [76].

We have hypothesized on the crosstalk of NCC/HIV/AIDS/COVID-19 
infections without Antiretroviral (ARV) therapy as a cause of multiple medical 
consequences and death. Following the arrows is possible to understand the 
self-explanatory proposal. Finally, we hypothesized the interactions of NCC, 
HIV/AIDS, and Omicron-SARS-CoV-2 on patients without ARV therapy, as 
can be graphically represented. The role of SARS-CoV-2 in accelerating the 
mechanism of T-cell exhaustion and its capacity to decrease the production 
of INFγ, IL-2, and TNFα should not be ignored in future medical research. Of 
course, more investigation will clarify doubts and establish curative therapy 
with safe and sustainable accurate prophylaxis [74]. Recently, we reported 
a case presenting long-COVID-19 with subarachnoid NCC, associated 
ischemic stroke, and signs of brainstem dysfunction leading to neurogenic 
respiratory failure. There is enough evidence to support our hypothesis 
on the pathogenesis of long-COVID-19, and brainstem dysfunction in 
patients with NCC, the role of the microbiome and recommended treatment. 
Nevertheless, well-designed, double-blinded, randomized controlled trials 
in SARS-CoV-2 infected patients are needed to confirm further or reject 
our recommendations [75]. Furthermore, although we investigated the 
immunologic system and NCC, we never reviewed the relationship between 
NCC and the CNS lymphatic and glymphatic system. Therefore, how do the 
LCV and the GS contribute to removing CNS waste in patients with NCC? 
It is our main research question; therefore, our primary objective will be to 
look for the necessary information to answer that question.

Materials and Methods

We searched the medical literature comprehensively, looking for 
published medical subject heading (MeSH) terms like "NCC and lymphatic 
CNS",; "meningeal lymphatic vessels", "glymphatic system"; OR "NCC/
MLS/GS",; OR "waste removal in NCC"; OR "MLS/GS/Epilepsy;" OR "MLS/
GS/neuroparasitology"; OR "Zoonosis and brain LS." We also searched at 
https://www.clinicaltrials.gov/, a website facility from the US National Library 
of Medicine for unpublished clinical trials, using the same MeSH terms as 
above, but applying the filters "full publication" AND "summary", published 
in English, Spanish, or Portuguese. 

Inclusion and exclusion criteria and screening process

Publications eligible to be included in this study had to meet the 
following inclusion criteria:

1. Human beings involved.

2. The full article was written in English, Spanish or Portuguese.

3. The central aspect is NCC, LS, MLS, GS, zoonosis, immunology, 
neuroimmunology neuroparasitology.

4. Published in the medical journal after being approved by the peer-
review process

The exclusion criteria were: (1) publication did not refer to issues 
numbered 3; (2) review articles, letters, medical hypotheses, newspaper 
publications or manuscripts that did not meet the criteria of an original study; (3) 
Medical conference proceedings; (4) clinical trials with less than ten cases per 
treatment arm; (5) duplicate articles or manuscript written by the same author 
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using the same data; (6) publication without corresponding authors.

All abstracts were screened twice in a blinded fashion. Those found 
to meet any exclusion criteria were not included in the analysis, and any 
discrepancy among authors was solved by close scientific discussion.

Literature search strategy

We included case reports, case series, observational cohort studies, 
systematic reviews and meta- analyses, cross-sectional studies, and clinical 
trials. During the initial search, we looked for inclusive articles published 
between January 01, 2000, and July 30, 2022. We searched the following 
databases: Science Direct, Google Scholar, Medline, Scopus online 
databases, Scielo, Search of Sciences, BioRxiv, medRxiv and Cochrane 
library. All studies were retrieved by utilizing MeSH, as before cited. We did 
not include other aspects beyond the current work scope.

Study and cohort selection

We select prospective and retrospective cohort studies, case reports, 
case series, case-control studies, controlled clinical trials, reviews, and 
meta-analysis reporting data on listed topics.

Data collection process

The relevant information was extracted from each publication using 
Microsoft Excel in a structured coding scheme. The data collected included 
the type of NCC, clinical features, population size, age distribution, 
the means used to diagnose NCC, MRI studies for MLS or GS, and 
Immunological investigations where applicable. In any case, when there 
was uncertainty regarding the interpretation of the data obtained or how 
it could be used, the authors discussed the situation in question until they 
reached a unanimous consensus.

Data synthesis

Our investigation used aggregate data where possible, following the 
PRISMA guidelines.

Quality assessment of included studies

All studies were initially screened for bias using the Jadad scoring 
system [75]. Trials with a Jadad score <4 were removed, while investigations 
with a Jadad score ≥ 4 were selected for further assessment.

Results

Study selection

This study aims to update the scientific information released about 

these issues. A total of 2997 manuscripts were retrieved from electronic 
databases up to July 30, 2022. After removing irrelevancy and duplicates, 
281 manuscripts were taken for full-text screening, and, finally, 42 
publications delivering outcomes of interest were included for review. Of 
these included studies, 34 were peer-reviewed, and only one included 
epilepsy and MLV/GS reviews [76]. A PRISMA flow chart for the literature 
searched is shown below (Figure 1). None NCC/MLV/GS issues have been 
reported up to date.

Discussion

When writing this manuscript, we could not find any manuscript related 
to MLS/GS and NCC published in the medical literature. Apart from the 
publication made by Noé and Marchi on the link between the CNS lymphatic 
unit, neuroimmunology, and epilepsy [76], no other studies have been 
reported worldwide up to date. The before-cited authors established that the 
MLVs are interconnected with CSF- ISF drainage pathways. This functional 
mechanism for controlling homeostasis is named CSF-lymphatic unit, which 
contributes to the interstitial clearance of waste products from the nervous 
system modulating neuroimmune interactions and the pathogenesis of 
immune seizure disorders and secondary epilepsies.

The postulate of immune-privileged organ for the brain based on its 
anatomical barriers is today an old history amended by the presence of 
functional lymphatic vessels in the Meningeal Layers (MLV) of the brain and 
spinal cord and their role in drainage of solutes/macromolecule from the 
brain, and the route of communication between the Immune System (IS) in 
the CNS and a well-defined GS [44,45].

A long time ago, we reported several patients presenting active NCC at 
the vesicular stage who were free of neurological manifestations for many 
years; we also described the clinical manifestations seen at the colloid 
stage of NCC when the larva stage of the Taenia solium is dying due to 
natural causes or antiparasitic treatment, including the radiological features 
observed on CT scan of the brain [3,6-8,11-14,17-19,74-75].

The presence of pro-inflammatory cytokines, chemokines, and 
macromolecules derived from the colloid process of NCC provide a 
pre-lactogenic environment at the cortical grey matter leading to a 
hypersynchrony discharge at the initial axonal segment expressing clinically 
as epileptic seizures. Below, we will analyse the implication of MLV in the 
neuroimmune mechanism responsible for realizing CNS- derived antigens 
and drainage of waste material from cysticercus' dying process and immune 
cells as a critical player in immune surveillance [77]. (Figure 2)

Figure 1. PRISMA flow diagram of selected manuscripts.
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In cases of SNCC (Subarachnoid NCC) (racemose), the metabolic 
waste material, including the remnant of the scolex, other solutes, dendritic 
cells, Aβ and macrophages in the CSF, can be drained directly through 
the MLV, which are in a highly closed relationship with the SAS into the 
depth and superficial cervical lymph nodes (dCLN/sCLN) being the dCLN 
the foremost collector of MLV lymph [44,45], where B and T's cells integrate 
this material via specialized Antigen-Presenting Cells (APCs) as is shown 
in Figure 4.

During normal cell metabolism, Beta-Amyloid (Aβ) is produced, a 
polypeptide of 39-43 amino acids in the blood plasma, CSF, cerebral 
intercellular fluid, and ISF. The concentration of Aβ in the CNS is regulated 
by the mechanisms of outflow/inflow of the fluids. Using receptors and 
transporters like apical-side endothelial RAGE (receptor for advanced 
glycation end-products), efflux transporters P- glycoprotein/ABCB1 
and BCRP/ABCG2, unbound Aβ can pass across the BBB.We have 
hypothesized that MLV drains solutes and cell-associated antigens from the 
brain parenchymal tissue around to the grey/white junction (most specific 
location of NCC), interstitial fluid from cysticercus perilesional oedema as 
shown in Figure 3.

Figure 2. Graphical representation of the production and circulation of the CSF from the choroid plexus while ISF derives from secretions at the BBB. Both fluids interchange 
across the ependymal tissue in the ventricular system, VR space or basement membrane of the capillary vessel. Amyloid Beta (Aβ) and other Waste Metabolic Product (WMP) are 
drained from the SAS arachnoid villi (CSF), ISF (corpus callosum, anterior commissures and stria terminalis), ISS and VR space surrounding penetrating arterioles via MLV/GS and 
lymphatic vessels in the nasal cavity, all together supported by Corpus Amylacea (CA) and Aquaporin 4 (AQP4) then transported to the cervical lymph nodes where are phagocyted 
by macrophages. Th2 mediated under Treg regulation, cytotoxic CD8+, Antigen-Presenting Cell (APC), type 2 CD4+ helper is also represented in this figure.

Figure 3. Axial view of post contrast CT scan of the brain showing a cysticercus with ring 
enhancement (white arrow) surrounding by perilesional edema (yellow arrow).Inside the 
cyst an eccentric- degenerating scolex is seen. Intracystic fluid has a different density 
compared with a CSF density. Therefore it is classified as colloid stage.

Figure 4. (On the right) Axial view of CT scan of the brain showing a typical imaging 
of SNCC, where scolex are missing within large cystic lesion in the SAS. On the left: 
graphic representation of the circulation of the MLV in the duramatter, in closed contact 
with the CSF in the SAS where the scolex from SNCC degenerated after penetrating the 
CSF into the cyst increasing their diameter up to 50 mm or more. The waste metabolic 
material from this process is moved from the SAS via MLV to s/dCLN. The mechanical 
compression over the brain parenchymal cause neuroinflammation and immune 
response with accumulation of pro-inflammatory elements (represented in the figure), 
neuro apoptosis, death supporting cells among other waste metabolic material which is 
drained to the CLN via the GS.
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at the base of the skull, the pterygopalatine region, and along the spinal 
nerves and cranial nerves II, V, IX, X, XI. Its principal function is related to 
interstitial solute clearance, brain homeostasis, immune surveillance, and 
modulation of neuro-inflammatory response [44,45,80].

The presence of perilesional fluid in NCC (Figure 3) is due to local 
BBB damage causing vasogenic/cytotoxic cerebral oedema. The BBB allow 
pass through only small molecules like water, lipophilic substances, and 
some gases by passive diffusion but, under these circumstances, leads to 
sustained ictal activity, as has been proved by other authors [81-83].

Suppose the intraparenchymal cysticercus is dying (Figure 6). In that 
case, there are an elevated concentration of pro-inflammatory elements, 
with consequent cytokine storm, plenty of antigens, and antibodies plus 
the end plate astrocytes lesion where are their water channel receptors 
(to be discussed later) and dysfunctional GS causing: a) significant fast 
disequilibrium of ionic concentration (mainly K+) which affect the initiation 
of the action potential, b) an essential accumulation of serum protein, 
waste material, dysfunctional ISF circulation around the perivascular and 
brain tissue promoting neuronal hyperexcitability, cell damage, elevate 
glutamate concentration, hypometabolism, hypoxia, perilesional oedema 
and neuroinflammation [84-89] contributing to the production of hyper 
synchronic discharge of the affected cortical neurons causing epileptic 
seizures.

The before-cited astrocyte end-plate axonal damage and the capillary 
endothelial cell lesion lead to protein accumulation in the interstitial 
space and water entry into the brain parenchymal with lipophilicity of the 
Virchow-Robin (VR) perivascular space. Dysfunctional circulation of ISF, 
which contain ions, proteins, peptides, and neurotransmitters (to keep the 
isotonicity of the nervous tissue), may cause interstitial accumulation of 
hyperphosphorylated tubulin-associate protein and pTau (waste products) 
activating astrocytes and microglia leading to neuroinflammation and 
epileptic seizures as we proposed recently [74,76]. As is shown in Figure 
7, ISF moves through the extracellular space by diffusion and convection 
mechanisms. However, mixing and interchange processes between ISF 
and CFS vary according to the regions of the brain where it happens, like 
close to the ventricular system and depth cortical layer, and the CSF moves 
by diffusion. While the ISF moves through ependymal cells in the ventricles, 
through Virchow-Robin (VR) perivascular space (ISF-CSF exchange) and 
the basement membrane of the capillary wall (direct flow of ISF to MLV). 
(Figure 7)

In patients with IVNCC, a passage of fluids can be done across the 
ependymal tissue causing interstitial oedema around the obstructive 
hydrocephalus, and waste material from the destructive process of the 
scolex in the lateral, third or fourth ventricle could be drained through the 
Virchow-Robin (VR) perivascular space via GS, cranial nerves II, V, IX, X 
and XI and even pass through the cribriform plate at the anterior fossa into 
the lymphatic vessel at the nasal cavity and surrounding lymph nodes as it 
shows in Figure 5.

To avoid autoimmunity, an effector response is necessary to provide 
apoptosis from the combined activity of lymphocytes, APCs and CLN 
and naïve lymphocytes production. Therefore, as other authors have 
established, the MLV plays a pivotal role in immune-cell activation and 
cell differentiation, brain fluid movement, drainage of solutes [78], and 
participation in the pathogenesis of neurodegenerative disorder secondary 
to the accumulation of macromolecules and neuro-immune crosstalk 
[18,79].In the brain, the MLV are present in the dura mater facing the SAS, 
lining the dural sinuses on the calvarium, the middle meningeal arteries 

Figure 5. Show a graphical representation of the drainage of the CSF from obstructive 
hydrocephalus via cribriform in the anterior fossa plate into the nasal cavity and along to 
some cranial nerves. Other information is included in the figure.

Figure 6. On the right: Axial view of CT scan of the brain show bilateral and multiple active cysticercus in vesicular stage where the density of the intracystic fluid is the same of the 
CSF in the ventricular system. Yellow arrows show a cyst at the beginning of colloid stage. Although the eccentric scolex is still present, the density of the intracystic fluid increased 
compared with other cysts, there is an associated swelling of the pericystic tissue in the head of the right caudate nucleus plus a calcified lesion below the cyst.
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autoimmune-mediated CNS inflammation-causing immune epilepsy.

Some authors classified autoimmune encephalitides as (a) T-cell 
diseases against intracellular antigens (e.g., GAD65); (b) anti-NMDA 
[N-methyl-d-aspartate] receptor, anti-LGI1, anti-VGKC complex); (c) 
encephalitides associated with other autoimmune disorders (e.g., lupus 
cerebritis); and (d) encephalitides with pathogenic antibodies against 
cell surface proteins [108]. Therefore, immune therapy should be added 
if patients do not respond correctly to anti-seizure/anti-epileptic drugs. 
Probably, the before-cited CD8+ -mediated immune response is due to poor 
MLV drainage or obstruction of the MLV/GS flow with a consequent loss of 
neurons and supporting cells [109].Once more time, we like to highlight that 
according to the immune capacity of the host, the number, location, and 
stage of cysticercus in the CNS, and the underlying or comorbidity disease, 
among other factors, is the amount of releasing pro-inflammatory cytokines, 
which can upregulate the expression of ICAM-1, VCAM-1(Vascular Cell 
Adhesion Molecule 1), and E-selectin (adhesion molecules) on endothelial 
cells as have been reported many years back [110].

Nevertheless, we considered the cysticercus dying process can 
decrease CNS-lymphatic unit efficiency (activating autoimmune T cells), 
produce local neuroinflammation, and BBB damage promoting recruitment 
of CNS B/T lymphocytes under a dynamic process where MLV can be 
replaced via VEGFR-3 signalling from Vascular Endothelial Growth Factors 
(VEGF-C and VEGF-D), podoplanin, tissue-infiltrating inflammatory cells 
(e.g., CD11b+/Gr-1+ macrophages) and tube-like structures among other 
components. These newly formed MLVs will restore the fluid drainage to 
dCLN and counteract the inflammatory process caused by dying cysticercus 
and local cell apoptosis. Other investigators have confirmed that injections 
of adenoviral VEGF-C vector into the parenchymal tissue and ventricular 
system induce the growth of MLV [111], which supports our hypotheses.

We assume that clearance of waste from the destruction of cysticercus 
at the brain parenchymal occurs along the VR pathways into the dCLN 
while the waste material from Intraventricular NCC dying process (IVNCC) 
and destruction of the scolex in Subarachnoid NCC (SNCC) drain to sCLN 
and dCLN. In our opinion, in patients presenting massive NCC (Figure 
KLM), the CFS-ISF drainage does not work due to obstruction of MLV, 
causing unusual pro-inflammatory situations secondary to cell and solute 
accumulation promoting deadly neuroimmune reactions.

Based on investigations made on animal models by Aspelund et al. 
and Louveau et al. [44,45], we know that cleared ovalbumin from the brain 
moves to the dCLV through the MLV at the base of the brain. Therefore, 
considering the same pathway for clearance of interstitial molecules during 
the colloid stage of NCC, it makes sense. Nonetheless, it has been proved 
that accumulation of pTau is present in cases with secondary epilepsy, 
temporal lobe epilepsy, cortical dysplasia, and its participation in the 
mechanism of neuronal hyperexcitability [90-99]. Based on those findings, 
we have hypothesized the pathogenesis of epilepsy secondary to NCC, 
considering the accumulation of pTau as the main contributing factor to the 
ictal activity seen in NCC cases when the MLV and GS fail to be draining it 
to the dCLN [100-107].

On top of that, the role of CD8+ T cell activation in the mechanism of 
adaptive autoimmunity should be highlighted. We speculate that mechanical 
obstruction of MLVs by waste products, as suspected in massive brain NCC 
could result in sending most of all brain-derived antigens toward other 
lymphatic organs (e.g., spleen, sCLN, or lumbar lymph nodes), affecting 
the regulation of the neuroimmune response provided by the dcLNs leading 
to a significant cytotoxic CD8-mediated autoimmune reaction and death, as 
happened in our case (Figure 8).

Based on the previous report, we propose that NCC be considered 

Figure 7. Graphic representation of the CSF from choroid plexus and ISF from the ISS both circulating across the VR space, MLV, basement membrane of the capillary vessels, and 
cranial nerves in the presence of activate Microglia (Mg), AQP4/CA from astrocytes. Represented lymphatic flow located at the calvarium, dura matter, cranial fossa, along venous 
sinuses, middle meningeal artery, rostral rhinal vein, tentorium around pineal gland, pterygopalatine artery, and II-V-IX-X-XI cranial nerves.
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highly immune activities during homeostasis, brain development and 
neurological disorders [131-139]. The role played by Mg on myelogenesis, 
oligodendrocyte maintenance, synaptic pruning, remodelling synapses by 
presynaptic trogocytosis and spine head filopodia induction and inducing 
neurotoxic reactive astrocytes have been reported. Neuronal cell death is 
present in different NCC stage modalities where the role of the Mg clearance 
function is crucial to keep the brain activities within their normal parameters 
[140-148], although this function has not been proven to date. Microglial-
secreted pro-inflammatory mediators (IL-α, TNF, C1q) induce a reactive 
astrocyte state, decreased synaptogenesis factors, phagocytic activity, and 
cytokines produced by astrocytes affect microglia function mailing during 
homeostasis and inflammatory process as well [149-151]. The role of 
microglia activation in NCC- associated COVID-19 was reported recently 
by one of us [17,18,74]. Based on our systematic review of the medical 
literature, we have more evidence to highlight our previous postulates.

Role of astrocytes/aquaporin-4 (AQP-4) and GS in NCC 

How astrocytes activation modifies the CNS local immunological 
response in patients presenting NCC/COVID-19 was reported in detail 
before [17,18,74]. Now we are to comment on the role of AQP-4 in 
NCC. The end-feet transmembrane protein water channel facilitates the 
bidirectional movement of water through the cell membrane. It is considered 
the primary regulator of water homeostasis of the CNS, and its participation 
in transmembrane diffusion of some solutes, cell adhesion, cell volume 
regulation, molecular transportation, and membrane protein expression has 
been well documented [152]. From the group of AQP, which participate 
in the regular redistribution of CSF during glucose metabolism in neuron 
cells. The AQP-4 is the most expressed in the brain, playing a crucial role 
in the clearance of waste products from disintegrating parasitic process 
plus surrounding solutes composed of dead neurons and supporting cells, 
macrophages, plus other molecules and fluids from the ISS and VR space into 
the capillary vessel via dCLN. Another undesired component to be drained 
is astrocyte- neuron lactate products from the parasitic local inflammation, 
which is also transported out of the brain via AQP4-dependent GS clearance 
through CSF at the SAS, cribriform plate and cranial nerves II, V, IX, X 

Role of TNF in NCC

One of the most relevant neuroimmune elements in the brain is the 
TNF-α, a cytokine associated with type 1 immunity, made by many 
types of local cells. It is well known that Tumour Necroting Factor (TNF) 
signalling has the capacity of restricts neurogenesis and maturation of 
dendrites and even modulate cognitive behaviour in adults, modulate visual 
experience, activity-dependent synaptic refinement (α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid) trafficking, synapsis stability, and 
restriction of synaptic plasticity [112-121]. Based on the previous reports, 
we have considered that TNF plays a relevant role at the colloid stage of 
the larva stage of Ts in the CNS as a pro-inflammatory component in the 
epileptogenesis mechanism being the essential neuroimmune element of 
this process, only overpassed by IL-6 (Interleukin 6) (cytokine storm) in the 
comorbidity of NCC/COVID-19 [17,18,74].

Microglia and NCC 

Seems to be that oligodendrocytes are the supporting glial cells less 
affected directly by NCC based on the lack of areas of demyelination seen 
in imagenology. However, as mentioned below, CNS myeline damage can 
be expected secondary to dysfunctional microglia cells. On the other hand, 
impairment of all types of astrocytes in NCC is remarkably relevant as a 
component of BBB in the healing process of the nervous tissues during 
the nodular/fibrotic stage of NCC and the participation of AQP4, which be 
discussed later. Now, we like to comment on Microglia (Mg).

Approximately ten percent of the brain cells are composed of Mg, 
which are ramified tissue-resident macrophages (homeostasis) with high 
participation in the local immunity around cysticercus lesions, mainly at the 
brain parenchymal. Mg is a phagocytic vesicle that leads to the clearance of 
apoptotic neurons and other glial cells with enormous sensitivity to immune 
signals [122-130], an extensive lifespan (more than four years), which 
derive from primitive macrophages and originate in the yolk sac, moving to 
the fetal head colonizing the brain parenchymal for life without contribution 
from circulating cells, being programmed by the brain environment (tonic 
TGF-β signalling) and adopting a CNS-specific stage able to perform 

Figure 8. Diagram of Aβ accumulation in the brain which may leak through the GS from the ISS to LMV influenced by AQP4 at the end plate of astrocytes. The deletion of the AQP4 
gene reduces CSF tracer influx. Lymphatic vessels participate in the CSF dynamic and serve as drainage media.
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of neuropeptide orexin, deposition of Aβ in the brain, oxidative stress, 
disruption of the BBB, and circadian rhythm disruption must be considered 
as a risk factor for several brain pathologies [167]. If the food taken has 
a high content of salt, refined sugar, fat and animal proteins and is low in 
vegetables and fruit, then this risk is remarkably higher; At the same time, 
the diet is capable of restoring the average concentration of cortisol it will 
provide normal sleep/wakefulness process, better glymphatic clearance 
and less chance to develop cognitive impairment and dementia syndrome 
[168]. Obviously, in a patient with NCC, an adequate diet will provide better 
outcomes and fewer complications, including status epilepticus or stroke, 
among other problems.

The suprachiasmatic nucleus of the hypothalamus controls the 
Circadian Rhythm (CR). The function of the CR is to act as a pacemaker in 
sleep regulation and modulates the GS, CSF production, BBB permeability, 
and plasma norepinephrine concentration.

A recent discovery confirmed that the diminished glymphatic inflow 
following sleep deprivation is associated with declined polarization of the 
AQP4 at VR space [169], highlighting the previous postulates.

Recently, we reported the role played by the Autonomic Nervous System 
(ANS) and dysbiosis in patients presenting NCC/COVID-19, including 
the role of the tenth cranial nerve at the interface of the microbiota–gut–
brain axis and as a crucial link between peripheral and central immunity, 
the repercussion of disbalance between Firmicutes/Bacteroides on NCC/
epilepsy outcome, and how gut microbiome modulates the peripheral 
immune responses in NCC/COVID-19/Epilepsy and the immune type II in 
the gut are responsive to signal sent by the ANS [17,18,74]. Now, we like to 
comment on the sizeable modulatory effect of the ANS over the GS (inflow), 
as some authors proved [170] refreshing that during normal sleep, the 
sympathetic tone decreases, whereas the parasympathetic one increase. 
After activation of γ-Aminobutyric Acid (GABA) and galanin receptors with 
active projective inhibition of synapses in the activating reticular formation 
system, sleep initiation occurs together with the activation of the GS and the 
role of xylazine and dexmedetomidine blocking the release of norepinephrine 
from locus coeruleus after binding to the α-2 adrenergic receptors [171]. 
Neuropeptide neuromedin U from cholinergic parasympathetic neurons 
promotes type II remodelling responses. It is essential to keep in mind 
that norepinephrine is the most important mediator of sympathetic 'fight 
or flight responses and it can suppress Innate Lymphoid Cells 2 (ILC2) 
function and type II immunity which, together with the disturbed process 
of clearance of solutes/metabolites from cysticercus metabolic decrements 
during the NREM sleep, increase the risk of developing ischemic stroke 
associated with NCC vasculitis in IPNCC/SNCC (Figures 3 and 4), increase 
the frequency of recurrent and uncontrolled epileptic seizures and status 
epilepticus or even death in massive NCC (Figure 9).

Corpora amylacea in NCC 

Corpora Amylacea (CA) is a granular body composed of 88% 
of polymerized hexoses (primarily glucose), glycogen synthase for 
polyglucosan, ubiquin, protein p62, and other cellular components. 
Astrocytes produce CA, capable of trapping/sequestering/collecting 
hazardous products from cellular metabolism, plus other waste material 

and XI predominantly. Voluntary exercise increases AQP4 expression and 
clearance of amyloid-β. Based on previously listed evidence, we theorize 
that the inflammatory response created by the destruction of cysticercus 
in the CNS can cause depolarization of AQP4, leading to glymphatic flow 
inhibition, as reported in patients after status epilepticus. The same author 
reported cerebral oedema attenuation facilitates GS recovery [153]. Based 
on that evidence, we propose to include anti-cerebral oedema therapy in 
patients presenting NCC with surrounding perilesional oedema to facilitate 
the clearance process of remnants of death parasites, apoptotic neuron/
supporting cells, deposition of pTau and interstitial fluids. As additional 
information, we can mention that patients presenting a subtype of dementia 
syndrome (Idiopathic normal pressure hydrocephalus) loss of AQP4 
polarization and GS impairment have been confirmed [154,155].

In SNCC (racemose), an associated ischemic stroke due to NCC 
vasculitis is seven times more often than in the general population [23,45]. 
We have hypothesized that cerebral oedema in those cases includes 
cytotoxic oedema, vasogenic oedema (BBB breakdown), ionic oedema due 
to impairment of the GS and decreased AQP4 expression and polarization 
leading to CSF flow into the ischemic area through the VR space. On top 
of altered AQP4 polarization, a considerable accumulation of immune cells 
(mainly cytokines) and metabolic waste, including amyloid-β in the VR space 
during the inflammatory process associated with the destruction of the 
cysticercus cellulose, can block the GS flow and influx of CSF perpetuating 
neuroinflammation [156]. In our opinion, the brain's drainage disorder in 
NCC increases the neuroinflammatory response secondary to the increased 
accumulation of metabolic waste products and pro-inflammatory elements.

Recently, Kitchen and collaborators reported good results using 
trifluoperazine to eliminate cerebral oedema by inhibiting calmodulin which 
drives AQP4 astrocyte cell-surface localization by binding AQP4's carboxyl 
[157], and Liu et al. recommended glibenclamide to reduce cerebral oedema 
due to status epilepticus which inhibit the SUR1-TRMP4 channel complex 
at the membrane of protoplasmic astrocytes re-establishing the GS regular 
activity [153]. Up to date, no clinical trial to confirm these recommendations 
has been performed, but these results bring undoubling novel insight to 
encourage a look for a new target treatment for NCC AQP4 disorder soon.

The GS supports CSF currents into the brain along with the VR spaces 
and then into the ISS of the brain through aquaporin4. The dysfunction of 
the GS may be associated with the influx of CSF, which depends on arterial 
pulsation and an increased inflow, then more solutes are transferred to the 
VR space, but they cannot leave the VR space due to the depolarization of 
aquaporin-4 and dysfunctional GS. Furthermore, if Aβ accumulates inside 
the brain parenchymal and vessel walls, it can narrow the VR space with 
blockage of the GS' cleansing pathway [158].

In summary, the GS is a fluid-transport system that accesses all 
over the brain facilitating the exchange of CSF and ISF, clearing waste 
metabolic products from active CNS. The aquaporin-4 water channels 
promote fluid exchange between the VR spaces and the neuropil then CSF 
and ISF are transported back to the VR compartment by meningeal and 
CLV. Therefore, the MLV drain the CSF and ISF downstream of the GS. To 
combat neuroinflammation to treat GS dysfunction is mandatory [159]. The 
homeostatic recovery process and circadian pacemaker process are during 
sleeping time, and the glymphatic inflow is also related to Non-Rapid Eye-
Movement (NREM) [160-166].

Novel aspect published in the medical literature is related to the 
modulation of the GS inflow. One of them is the influence of sleep on the 
CNS clearance system.

The physiological state of decreased arousal has different stages. 
During the Non-Rapid Eye Movement (NREM) sleep, most CFS drain 
into ISS, being more efficient in the clearance of solute/metabolite waste 
compared with the awake stage. Therefore, during wakefulness, the 
extracellular level of solutes/metabolites waste products increases in the 
CNS, including the production of Tau oligomers. Therefore, lack of sleep 
or sleep/wakefulness cycle disorders represented by an increased level 

Figure 9. Axial view of CT scan of the brain shows massive NCC in vesicular, colloid, 
nodular-fibrotic and calcify stage with many areas of perilesional surrounding edema.
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from different areas of the CNS. Most CA is expressed in subpial, VR space, 
and periventricular regions, where they can be released into the CSF/ISF 
and travel via MLV/GS into the s/dCLN, where macrophages phagocyte 
them. Considering CA are in periventricular, VR space, and subpial regions 
of the brain and knowing that the GS drains ISF from the VR space to the 
CSF, which is close to the ventricles and subarachnoid space, some authors 
have proposed that CA are expelled from the brain to the CSF [172]. 

Conclusion

Based on this evidence, we have hypothesized that all solutes/
metabolite waste material produced by the disintegration of cysticercus in 
the CNS, including dead neurons/supporting cells, fragments of cysticercus, 
immunological material, degenerating mitochondria, membranous elements, 
and harmful fluids which are incorporated into CA and transported to s/
dCLN via MLV where are phagocyted by macrophages.

Unfortunately, NCC is more prevalent in large, disadvantaged countries 
where research facilities are not good enough to perform extensive 
neuroimmunology investigations. In our setting, it is not possible because 
the prevalence of NCC have been decreasing gradually. At the beginning 
of our studies (20 years ago), NCC/epilepsy was a very often public health 
problem, and now few patients are confirmed yearly, so the number of cases 
is scanty. Currently, other African countries with poor resources but receiving 
scientific support from developed countries will have the capacity to perform 
the proper research on neuroepidemiology, neuroimmunoparasitology 
and clinical trials to obtain the necessary results to eradicate completely 
the diseases before it continue spreading worldwide due to the expected 
globalization and the current massive emigration.
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