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Colchicine, Baricitinib, Efornithine, Umifenofir, 
Hydroxychloroquine, Azathioprine, Cycloserine and 
Linoleic Acid to Stratify Synergistic Responses on SARS-
COV-2 Main 6lu7 Protease: Quantum Mechanics Driven 
Applications of Artificial Deep Learning Similarities for a 
NOS3 Hypoxic Based Drug Retargeting Methodology to 
Treat COVID-19

Abstract
SARS coronavirus 2 (SARS-CoV-2) of the family Coronaviridae is an enveloped, positive-sense, single-stranded RNA betacoronavirus encoding a SARS-COV-2 
Main protease PDB:6LU7 with Unliganded Active Site (2019-NCOV, Coronavirus Disease 2019, that infect humans historically. Hydroxychloroquine (HCQ), an 
antimalarial has been proposed as possible treatment for coronavirus disease-2019 (COVID-19). Ischemic heart disease (IHD) is the leading cause of death and 
a major economic burden worldwide. It is the cause of over 30% of total annual deaths and constitutes 17% of overall national health expenditure in the United 
States (U.S.) The single nucleotide polymorphism (SNP) NOS3 894GT located in exon 7 (also known as Glu298Asp, rs1799983) is a genetic marker that has 
been specifically linked to an increased risk of IHD, hypertension, coronary spasms, and stent re-stenosis. Quantum mechanics, molecular mechanics, molecular 
dynamics (MD), and combinations have shown superior performance to other drug design approaches providing an unprecedented opportunity in the rational drug 
development fields and for the developing of innovative drug repositioning methods. The availability of newer modeling techniques with integration of the state of art 
deep learning algorithm can be modeled as a recommendation system that recommends novel treatments based on known drug-disease powerful computational 
resources. The formulation under this drug repositioning recommendation system could provide us with a deep learning model and generate the target-focused de 
novo libraries for the generations of a generate good-quality data and reliable predictions for new chemical entities, impurities, monoclonal antibodies, chemicals, 
natural products, and a lot of other substances fuelling further development and growth of the field to balance the trade-off between the molecular complexity and 
the quality of such predictions assuming that the hidden factors that cannot be obtained by any other method where new drug-disease associations having not 
been validated can now be screened. Drug repurposing offers a promising alternative by integrating related data sources to dramatically shorten the process of 
traditional de novo development of a drug. We here present an approach of a fast Singular Constructed Classification and Regression NOS3 894GT –SARS-COV-
2-ORF-1a Model which could be subsequently used for virtual screening against the generated de novo cluster of COVID19 libraries and diverse FDA chemical 
libraries. QMMM Quantum Deep Learning functional Value Thresholding (SVT) algorithm to prioritize drug combinations in high-throughput screens and to stratify 
synergistic responses on SARS-COV-2 Main protease PDB:6LU7 With Unliganded Active Site (2019-NCOV, Coronavirus Disease 2019, by co-targeting the NOS3 
894GT mutation for medications to treat COVID-19. At the core of our approach is the observation that the likelihood of synergy increases when screening small 
molecule, anti-viral compounds and other FDAs with either strong functional pharmacophoric similarity or dissimilarity. In this research paper, we estimated the 
druggable similarity by applying an inverse docking multitask machine learning approach to basal gene expression in acute respiratory distress syndrome and 
response to single drugs. We tested 18 small molecules and predicted their synergies in COVID19 SARS-COV-2 main protease PDB:6LU7 with unliganded 
active site (2019-NCOV), which is associated with 1,000,000 deaths worldwide, to devise therapeutic strategies, repurpose existing ones in order to counteract 
highly pathogenic SARS-CoV-2 infection and the associated NOS3-COVID-19 pathology. We anticipate that our approaches can be used for prioritization of drug 
combinations in large scale screenings, and to maximize the efficacy of the Colchicine, Baricitinib, Efornithine, Umifenofir, Hydroxychloroquine, Azathioprine, 
Cycloserine, Cobicistat and Linoleic acid drugs already known to induce synergy, ultimately enabling COVID19 hypoxic patient stratification.
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Introduction

The COVID-19 disease was declared on March 2020 a pandemic by 
the World Health Organization (WHO) and is accountable for a large 

number of fatal cases. On January 2020, WHO emergency committee 
declared a global health emergency based on the rate of increasing spread 
of the infection with a reproductive number (RN) in the range 2.0-6.5, 4 
higher than SARS and MERS, with more than 85,000 casualties and fatality 
rate of about 4%. The Spike protein is a large, trimeric protein whose 



Clin Schizophr Relat Psychoses, Spl 1, 2020Grigoriadis JI.

Page 2 of 13

Receptor Binding Domain (RBD) undergoes somewhat unusual dynamic 
transformations sometimes called “breathing”. From a protein engineering 
perspective, so-called “breathing” reflects the inherent flexibility and/or 
localized mobility associated with the Receptor Binding Domain (RBD) of 
the Spike Protein. In the so-called “Up-state” of the RBD, the (prefusion) 
protein is able to bind to ACE2 (Angiotensin Converting Enzyme 2) and 
infect (via a transformation to its fusion state) human epithelial cells (Type I 
and II pneumocytes; also, alveolar macrophage and nasal mucosal cells), 
but in the “Down-state” the Spike protein is believed to be inactive to ACE2 
binding and to cellular infection. We note that the S1 domain of the Spike 
protein is shed in the transition from the prefusion state to the fusion state 
of this virion; those transformational aspects are not considered here. The 
exact mechanism and specific structural details associated with the 
flexibility or local mobility of the RBD in the Up and Down states in SARS-
Cov-2 remain unanswered. For example, it is not known whether these 
states exist simply randomly or by deterministic changes orchestrated by 
the virion or its environment. Recently unpublished long time Molecular 
Dynamics (MD) studies (10μs) of an isolated Spike Protein by the Shaw 
Group (4) noted that the protomers tended to persist in their initial states, 
i.e, Down states remain Down and Up states remain Up. However, the Up 
state protomer demonstrated further distal displacement and mobility from 
its initial state that was given by experimental structural data [1-4] . In order 
to better understand the differences between the Up and Down protomer 
states, we conducted an all-atom interacting energy landscape mapping of 
the entire Spike protein from its *.pdb (Protein Data Bank) structure file 
(6vsb.pdb) in order to identify interaction energy “glue” points associated 
with relatively strong non-covalent atom-atom interactions between 
residues, which may be responsible for specific persistent domains of this 
complex trimeric protein. In doing so, we were able to identify some unique 
and potentially critical differences between the Up and Down protomers 
within the overall trimeric structure, including a possible molecular latch that 
helps to maintain the RBD in the down state conformation. The latch 
residues are conserved across the closely related virions SARS-Cov-1 and 
the bat corona virus RatG13, as well as known variations of the novel 
corona virus. Comparative analyses between Up and Down state protomers, 
such as those given here, may lead to potentially new therapeutic targets 
aimed at disrupting the viral functionality of the Spike protein to its role in 
COVID-19. Anti-malarial medicine chloroquine (CQ) and particularly its 
chemical analogue hydroxychloroquine (HCQ) have been recommended as 
promising candidate therapeutics that are now under either compassionate 
off-label use or clinical trials for the treatment of COVID-19 patients. [1] 
Collaborative efforts for Genomic characterization, Molecular epidemiology, 
evolution, phylogeny of SARS coronavirus and epidemiology from scientists 
worldwide are underway to understand the rapid spread of the novel 
coronavirus (CoVs), and to develop effective interventions for control and 
prevention of the disease. As originally an anti-malarial medicine applied for 
decades, hydroxychloroquine (HCQ) is one of the disease-modifying 
antirheumatic drugs (DMARDs), which is widely used for treating certain 
rheumatic diseases such as rheumatic arthritis (RA) and systemic lupus 
erythematosus (SLE), and it also generates a strong immunomodulatory 
effect, which prevents inflammation flare-ups and multi organ damage [1]. 
Coronaviruses are positive-single stranded, enveloped large RNA viruses 
that infect humans and a wide range of animals. Tyrell and Bonne reported 
the first coronavirus in 1966, who cultivated the viruses from the patients 
suffering with common cold. In Latin, Corona means “crown” based on their 
shapes. Structural analysis reveals the atomic level-specific communications 
between spike protein receptor-binding domain of SARS-CoV2 and ACE2 
receptor present in the host to regulates the transmission of cross-species 
and human to human (Fig. 2 ). SARS-CoV-2also uses ACE2 as its binding 
receptor, to transfer from human to human [2]. It has also been reported that 
the SARS-CoV-2 intervened mainly in the lung with progression to 
pneumonia and acute respiratory distress syndrome (ARDS) via the 
angiotensin-converting enzyme 2 (ACE2) receptor. Depending on the viral 
load, infection spread through the ACE2 receptor further to various organs 
such as heart, liver, kidney, brain, endothelium, GIT, immune cell, and RBC 
(thromboembolism) [2]. NOS3 is a vasoprotective gene [3] that regulates 
vascular tone, blood pressure and platelet aggregation [3]. Research 

reports have shown that NOS3 can affect metabolism in the urea cycle of 
the methylation pathway, which is essential for preventing systemic 
inflammation [3]. The single nucleotide polymorphism (SNP) NOS3 894GT 
located in exon 7 (also known as Glu298Asp, rs1799983) is a genetic 
marker that has been specifically linked to an increased risk of IHD, 
hypertension, coronary spasms, and stent re-stenosis (8,14,15 respectively). 
More specifically, it has been reported that the NOS3 894GT SNP represents 
a guanine (G)/thymine (T) substitution at position 894 on exon 7 leading to 
a change from glutamate to aspartate at position 298; rs1799983. This may 
be aggravated by cytokine storm with the extensive release of 
proinflammatory cytokines from the deregulating immune system. [2] 
Coronaviruses have four subfamilies, which includes alpha-, calculations. 
[3] Molecular structure can be determined in heterodox interpretations by 
solving the time-independent Schrödinger equation: QM methods, vertex 
prizes and edge costs including ab initio Density Filed Theories [DFT] and 
semi-empirical in place of the quantum processor and [4] energy among 
other observables, under simulated sampling error as well as to reposition 
drugs about bonding may represent the similarities and dissimilarities [5] 
between drugs and repurposed viral proteins respectively. However, the 
Schrödinger equation cannot actually be solved for any but a one- data-
driven electron system methods [the hydrogen atom], and approximations 
need to be made. According to QM, [6] an electron bound that converges 
quickly and reliably to an atom cannot possess any [7] arbitrary energy to 
produce the desired distribution by analyzing pharmacological data or 
occupy any position in space using statistical and machine [8] learning 
concepts.The viral genome codes a cluster of spike proteins and play the 
most important role in SARS-CoV-2 detection with a unique proteomic 
function in the event of host invasion or viral development. In recent years, 
the productivity challenge facing the pharmaceutical industry [9] has 
become particularly difficult to overcome. [10] By many estimates, the 
number of new molecular entity approved to market per billion US dollars 
spent on (research and development) R and D has halved roughly every 
one decade, falling around 80-fold in inflation-adjusted terms [11] . To 
increase drug-discovery productivity, more and more attention has been 
paid to exploring the relationship between drug and disease, which can 
advance our knowledge of molecular mechanism of disease indication and 
lead to new strategies to treat productivity challenge [12,13]. Nevertheless, 
traditional strategies which typically oriented on a search for a novel 
therapeutic compound combined of construct classification features with 
discovery of a new therapeutic target are time consuming, expensive and 
risky because of the necessity for multiple experimental and clinical 
validation [14]. Drug repurposing/repositioning/rescue proposed a 
computational method to identify potential drug indications by integrating 
various applications of an existing drug to a new disease indication, is a 
promising approach to address the „productivity gap‟, especially the 
demand of rapid clinical impact at a lower cost by the „starting-from-scratch‟ 
drug development [15,16]. Compared with brand new drug discovery for a 
given disease indication, this method has several advantages. First, due to 
the existing drug has already been proved to be sufficiently safe in humans, 
the safety risk of clinical failure is much lower at least from a safety point of 
view to calculate drug similarities. Second, due to the safety assessment 
and most of formulation task have already been completed, the development 
cycle should be largely reduced. Third, the investment is always less 
[17,18]. These advantages have made the development of repurposed 
drugs into a task of low risk investments with faster and higher returns. 
Hence, Drug repurposing which has incorporated the topological information 
is drowning widespread attention from the pharmaceutical industry, 
government agencies and academic institutes, such as Discovering New 
Therapeutic Uses for Existing Molecules Plan by NIH (USA). However, drug 
repurposing is vastly more complicated than typically imagined and to date 
there has not been a systematic approach of drug to gene interaction 
network to identify repurposing opportunities and to predict novel free 
energy docking energy associated drug indications. In order to reduce the 
number of wet experiments, to compute drug-disease association and 
thereby reduce cost, extensive research efforts on known drug-disease 
associations have been directed toward developing computational (virtual 
or in silico) approaches, which have been proved extremely valuable in 
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identifying potential opportunities in these has attracted much interest due 
to the large-scale generation computational chemistry fields. Of the several 
techniques for generating computational repositioning hypotheses, of high-
throughput biological data, to predict drug-disease associations, inverse/
reverse docking, of complex biological interaction networks involved 
docking an existing drug in the potential binding cavities of a set of clinically 
relevant disease targets, based on matrix factorization models is proving to 
be a powerful tool for drug repositioning [18,19] to predict novel drug 
indications. Inverse docking is „one ligand-many targets‟ scenario, 
representing a structure-based computational strategy. Different with the 
conventional drug virtual screening, inverse virtual screening was performed 
for a small-molecule against a large collection of binding-sites of clinically 
relevant macromolecular targets. The top-ranking targets based on the 
binding complementarity (shape and electrostatics) with the drug are likely 
to result in potential drug repositioning. Hence, efficient tools were 
developed for inverse docking, for example, INVDOCK [20], Tar Fis Dock 
[21], PDTD [22], and id target [23]. Moreover, successful drug repurposing 
examples along with these tools are steadily grows, such as sildenafil and 
thalidomide. Since the basic philosophy behind reverse docking is the same 
with docking and the critical parameters of the docking programs were 
always optimized based on some of the specific ligand and target systems, 
the performance in docking pose search itself and scoring of the docked 
poses may, thus, still face challenges for reverse docking methods. Up to 
date, many studies have proved that the consensus strategy that combining 
several types of docking algorithm can achieve higher success rates in 
pose prediction than single docking algorithm [24,25]. Hence, development 
of consensus inverse docking algorithms to address the inherent difficulties 
involved in the molecular docking, is extremely valuable in identifying 
potential opportunities of drug repurposing. In addition, due to that almost 
all current docking tools are designed for „one ligand-many targets‟ 
scenario, the usability of tools for inverse virtual screening task is 
occasionally restricted by code-writing dependencies and tedious operation 
steps, which bring challenges for non-expert users. Therefore, there is still 
a strong demand for a new free server of inverse docking. Hence, we 
developed a computational protocol by combining the results of several 
dissimilar types of free docking method into a consensus inverse docking 
(CID) scheme. Here, we selected the Bio-genetoligandorol TM cluster of 
tools and algorithms for binding pose search as they represent significantly 
different docking methodologies (i.e., different conformational search 
algorithm, different global and local optimizers, and different scoring 
functions) and have employed different collections of crystal complexes and 
binding data to calibrate their optimization algorithms. In addition, we used 
Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and 
X-SCORE for final binding energy calculation as they are more rigorous 
than the intrinsic scoring function in principle. The intention was to 
investigate whether integration of these to develop a consensus strategy to 
the inverse docking problem would result in improvements in posing 
accuracy and prediction of binding modes. Deep learning permits machines 
to take care of complex issues in any event, when utilizing an informational 
index that is exceptionally differing and unstructured. The more Deep 
learning calculations learn, the better they perform. Besides, in order to 
significantly reduce user time for data gathering and multi-step analysis for 
drug repurposing task, an comprehensive web platform named Auto in silico 
consensus inverse docking Bio-genetoligandorol TM with a user-friendly 
interface was also designed for an easy evaluation by propagating 
information and application of this strategy, which consists of the following 
three tools: 

• An automated consensus inverse docking workflow program, 

• A compound database containing 2086 approved] drugs with original 
therapeutic information, 

• A known target database containing COVID19 protein structures from 
PDB covering 30 binding sites. 

Drug repurposing in this article refers to the use of existing approved 
drugs for the treatment of a never-considered therapeutic indication - in this 
case, COVID-19. The discovery and development of new molecular entities 

being lengthy, time-killing and high-priced for clinical trials to earn regulatory 
authorizations or sanctions, the momentary passage thus to potential 
treatments is the repurposing (repositioning) of prevailing approved drugs 
for the treatment of COVID-19. In this context, Chloroquine (CQ) and its 
Hydroxyl analogue Hydroxychloroquine (HCQ) have been reported in the 
treatment of viral infection. These drugs have antimalarial activity and also 
showed in vitro treatment against COVID-19 [12-27]. Similarly, an antiviral 
drug Remdesivir primarily used in the treatment of Ebola virus clinical 
studies exposed new successful effects against COVID-19 in vitro. It is an 
adenosine analogue, basically integrates into nascent viral RNA chains and 
shows in early termination [13-28]. Remdesivir, a monophosphate prodrug 
of an active C-adenosine nucleoside triphosphate analogue, was originally 
discovered for the potential treatment of Ebola virus disease. Remdesivir 
has shown promise in the treatment of COVID-19, prompting emergency 
use clearance from the FDA, although indication is limited to severe disease 
only.The FDA made this decision on the basis of early research showing 
that the drug might help speed up recovery for hospitalised patients with 
COVID-19. Mechanistically, remdesivir was shown to inhibit the viral 
RNA-dependent RNA polymerase (Figure 1). A double-blind, randomised, 
placebo-controlled trial of intravenous remdesivir in adults hospitalised 
with COVID-19 showed that remdesivir significantly shortens the median 
recovery time to 11 days, compared with 15 days in the placebo group. 
These preliminary findings support the use of remdesivir for patients 
who are hospitalised with COVID-19 and require supplemental oxygen 
therapy. However, another randomised, open-label, phase 3 trial involving 
hospitalised patients not requiring mechanical ventilation did not show 
a significant difference between a 5-day course and a 10-day course of 
remdesivir. Further investigation of the clinical benefits of remdesivir for 
patients with COVID-19 in different patient subgroups with or without 
mechanical ventilation is needed to identify the shortest effective duration of 
therapy. Lopinavir and Ritonavir were used in the ministration of COVID-19 
patients. These two antiviral agents mainly affect proteolysis in coronavirus 
replication cycle [29]. Ribavirin is an analogue of ribonucleic and inhibitor 
of RNA polymerization. This drug has shown in vitro activity against 
SARS-CoV-2 in preclinical studies [30]. In this research article we present 
a drug-repositioning strategy and a Quantum Deep Learning network-
based prioritization method based on a heterogeneous network integrating 
similarity to detect drugs that can fight against emerging diseases such as 
COVID-19. This technology to predict new therapeutic indications for drugs 
and novel treatments for diseases has the potential to infer novel combined 
treatments for COVID19 diseases in order to improve the drug discovery, 
planning, treatment, and reported outcomes of the COVID-19 patient, being 
an evidence-based medical tool.

Figure 1. The acceleration the Lamarckian genetic algorithm result.

Materials and Methods

Screening compounds to COVID2019 SARS-COV-2 Main 
protease PDB:6LU7 targets

Molecular docking and quantum mechanical LigandorolTM-inspired 
physarum-prize-collecting Neural Matrix Factorization drug repositioning 
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scoring analysis are implemented to a collection of the ZINC databases. 
Virtual screening is a technique largely based on its libraries of small 
molecules and the COVID19 target sites. Protein-molecule complexes 
[2-21]. followed by structural relaxation were generated through flexible-
ligand:rigid-receptor molecular docking in this local energy minimization 
to optimize protein-molecule interactions capping the N- and C-terminal 
of each fragment with i-GEMDOCK through cycles in amino-acids [15-
23] within 4 Å of any docked molecule. It is a Many Integrated Core 
enabled version of D3DOCKxb [16,17-30] . The authors accelerated the 
Lamarckian genetic algorithm (Figure 1) deeply, and achieved 12× to 18× 
sppdup. Based on such platform, SIMM carried out a virtual screening 
of the Azathioprine, Azithromycin Baricitinib, Bleomycin, Cobicistat, 
Colchicine, Cycloserine, Darunavir, Eflornithine, EIDD-2801_MK-4482, 
GC376,Histrelin, Linoleicacid, Minocycline, Remdesivir_Gilead, Ritonavir, 
Umifenovir small molecules (Figure 2(a), Figure 2(b), and Figure 2(c)).

Multi-scale network visualization, analysis and infer-
ence based on the gene ontology

A network of a large group of viruses is constructed by entering ORF 
IDs, GI numbers, or even KEGG pathway IDs associated with a number 
of human respiratory infections [16,17] for an arbitrary number of genes, 
and using data obtained by one or any combination of methods of viral 
therapeutics and bio-interventions. Nodes corresponding to the selected 
genes will then appear on the screen, and by left clicking one or more times, 
they can be expanded into an increasingly complex set of interactions 
to discover effective therapeutic agents. Figure 2b is a screen shot of 
the connections in a segment of the SARS-COV-2 regulatory network 
[16,19,17,19] between the list of COVID19 genes of (ACBD5, ACE2, 
ACO2, ACSL3, ADAM9, ADAMTS1, ADAR, AGPS, AGT, AGTR1, AGTR2, 
AKAP8, AKAP8L, AKAP9, ALG11, ALG5, ALG8, ANO6, ANPEP, ANTXR1, 
ANTXR2, ANXA2, 7AAP_D, 7AAP_C, 7AAP_B, 7AAP_A, 6ZRU_A, 
6ZRT_A, 7K40_A, 7K3T_A, 7K1O_C, 7K1O_B, 7K1O_A, 7K1L_B, 
7K1L_A, 7JZU_B, 7JZN_C, 7JZN_B, 7JZN_A, 7JZM_B, 7JZL_B, 7JZL_C, 
7JZL_A, 7JX6_B, 7JX6_A, 7JKV_B, 7JKV_A, 7D1O_A, 7CAK_C, 7CAK_B, 
7CAK_A, 7CAI_C, 7CAI_B, 7CAI_A, 7A98_C, 7A98_B, 7A98_A, 6ZXN_C, 
6ZXN_B, 6ZXN_A, 7A97_C,, 7A97_B, 7A97_A, 7A96_C, 7A96_B, 7A96_A, 
7A95_C, 7A95_B, 7A95_A, 7A94_C, 7A94_B, 7A94_A, 7A93_C, 7A93_B, 
7A93_A, 7CMD_D, 7CMD_C, 7CMD_B, 7CMD_A, 7CJD_C, 7CJD_B, 
7CJD_A, 7CJD_D, 6ZOK_j, 6ZOJ_j, 6XMK_B, 6XMK_A, 6Z97_C, 6Z97_B, 
6Z97_A, 6YOR_A, 6YOR_E, 7JZ0_Dl, 7JZ0_C, 7JZ0_B7JZ0_A, 7JYY_D 
CTSL, FURIN, TMPRSS2, ACE2, DPP4, SLC6A, MASTL, AFM, CDSN, 
ORF1, ORF1ab, ORF6, ORF8, ORF7a, ORF3a, ORF7b, APPS, CPSB, 
RECEUP, FUR, PACE, PCSK3, SPC1 ADABP, ADCP2, CD26, DPPIV, 
TP103 protein-ligand in the SARS-COV-2 network, revealing complex 
feedback relationships by cleaving the polyprotein at eleven distinct 
sites that possibly contribute to regulatory control in these pathways to 
identify other non-structural proteins vital in viral replication. Additional 
functionality is supported by the Predictome database, wherein the active 
site, which maintains look-up tables that store and associate synonyms 
and annotations housing the catalytic dyad (Cis145 and His41) for the 
same protein/gene, and which also facilitates the integrative analysis of 
the network with function, structure to the rest of the protein structure and 
sequence annotation by a long loop that contains a larger pocket relative 
to the active site from the beta-turn joining the 15 and 16. To simplify and 
help filter the larger data sets, different layout algorithms combined with 
the built-in basic graph operations of the active Non-structural protein 15 
(nsp15) Nsp15 site of the enzyme, specifically the proposed catalytic triad 
His235, His250, and Lys290 such as closed loops, help to isolate network 
topology features that have potential biological implications by preventing 
simultaneous activation of host cell ds RNA sensors [20-22]. The relaxing 
layout algorithms implemented are all based on a similar core heuristic 
algorithm of three distinct regions: the N-terminal domain, a subsequent 
middle domain, [23] which models a two-dimensional network of physical 
objects where it regulates important cellular processes, such as protein 
folding, cell death, and cell differentiation with mechanical forces operating 
along the edges mediated by ACE2 receptors forming complexes with spike 
proteins. The source code for these algorithms is based on modifications 
of a layout program distributed by Bio-genea Pharmaceuticals Ltd [17]. 
Although the algorithms have no biological meaning, they successfully 
separate the graph by the density of the connections between subgroups of 
nodes, providing a visual method of identifying relatively dense sub-graphs 
within larger networks.

In Figure 3, The SARS-COV-2- NOS3 G894T related network 
constructed from the list of the genes: Lys711 and Arg712 protein 
that are in contact with the other protein and the small molecule are 
shown Shortest path(4)::CSNK1E-RBX1-ELAVL1-PVR-TJP1, Shortest 
path(4)::CSNK1E-RBX1-WNK1-PVR-TJP1, Shortest, path(4)::CSNK1E-
RBX1-TP53-RAE1-TJP1, Shortest path(4)::CSNK1E-RBX1-UBC-RAE1-
TJP1, Shortest path(4)::CSNK1E-AKAP9-UBC-RAE1-TJP1, Shortest 
path(4)::CSNK1E-TCEB2-UBC-RAE1-TJP1, Shortest path(4)::CSNK1E-
RBX1-COPS6-RAE1-TJP1, Shortest path(4)::CSNK1E-TCEB2-

Figure 2(a). Colchicine geometrical descriptors and molecular surface.

Figure 2(b). Hydroxychloroquine geometrical descriptors and molecular surface.

Figure 2(c). Hydroxychloroquine geometrical descriptors and molecular surface.
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COPS6-RAE1-TJP1, Shortest path(4)::CSNK1E-AKAP9-TACC3-RAE1-
TJP1, Shortest path(4)::CSNK1E-RBX1-CUL7-RAE1-TJP1, Shortest 
path(4)::CSNK1E-RBX1-CUL3-RAE1-TJP1, Shortest path(4)::CSNK1E-
TCEB2-CUL3-RAE1-TJP1, Shortest path(4)::CSNK1E-RBX1-CUL1-RAE1-
TJP1, Shortest path(4)::CSNK1E-RBX1-UBC-CTSL1-CSTB, Shortest 
path(4)::CSNK1E-AKAP9-UBC-CTSL1-CSTB, Shortest path(4)::CSNK1E-
TCEB2-UBC-CTSL1-CSTB, Shortest path(4)::CSNK1E-RBX1-UBC-CTSH-
CSTB, Shortest path(4)::CSNK1E-AKAP9-UBC-CTSH-CSTB, Shortest 
path(4)::CSNK1E-TCEB2-UBC-CTSH-CSTB, Shortest path(4)::CSNK1E-
RBX1-UBC-CTSL1-CSTA, Shortest path(4)::CSNK1E-AKAP9-UBC-CTSL1-
CSTA, Shortest path(4)::CSNK1E-TCEB2-UBC-CTSL1-CSTA, Shortest 
path(4)::CSNK1E-RBX1-UBC-CTSH-CSTA, Shortest path(4)::CSNK1E-
AKAP9-UBC-CTSH-CSTA, Shortest path(4)::CSNK1E-TCEB2-UBC-
CTSH-CSTA, Shortest path(6)::CSNK1E-RBX1-CCNF-PDCD4-TMSB4Y-
C20ORF30-EBP, Shortest path(6)::CSNK1E-RBX1-FBXL12-PIGH-
D08682-C20ORF30-EBP, Shortest path(4)::CSNK1E-AKAP9-MAGED1-
AATF-DAZAP2, Shortest path(4)::CSNK1E-RBX1-UBC-AATF-DAZAP2, 
Shortest path(4)::CSNK1E-AKAP9-UBC-AATF-DAZAP2, Shortest 
path(4)::CSNK1E-TCEB2-UBC-AATF-DAZAP2, Shortest path(4)::CSNK1E-
RBX1-SMAD3-AATF-DAZAP2, Shortest path(4)::CSNK1E-AKAP9-
TSG101-AATF-DAZAP2, Shortest path(4)::CSNK1E-RBX1-CAND1-
AATF-DAZAP2, Shortest path(4)::CSNK1E-RBX1-UBC-NDUFA5-
DAZAP2, Shortest path(4)::CSNK1E-AKAP9-UBC-NDUFA5-
DAZAP2, Shortest path(4)::CSNK1E-TCEB2-UBC-NDUFA5-
DAZAP2, Shortest path(4)::CSNK1E-RBX1-APP-NDUFA5-DAZAP2, 
Shortest path(4)::CSNK1E-RBX1-CUL3-NDUFA5-DAZAP2, Shortest 
path(4)::CSNK1E-TCEB2-CUL3-NDUFA5-DAZAP2, Shortest 
path(2)::CSNK1E-TCEB2-SPSB4, Shortest path(4)::CSNK1E-RBX1-
EZH2-RP4-691N24.1-SPERT, Shortest path(4)::CSNK1E-RBX1-UBC-
RP4-691N24.1-SPERT, Shortest path(4)::CSNK1E-AKAP9-UBC-
RP4-691N24.1-SPERT, Shortest path(4)::CSNK1E-TCEB2-UBC-RP4-
691N24.1-SPERT, Shortest path(4)::CSNK1E-TCEB2-TCEB3-RP4-
691N24.1-SPERT, Shortest path(4)::CSNK1E-AKAP9-TUBG1-RP4-
691N24.1-SPERT, Shortest path(4)::CSNK1E-RBX1-PLK1-RP4-691N24.1-
SPERT, Shortest path(4)::CSNK1E-RBX1-MCM10-RP4-691N24.1-SPERT, 
Shortest path(4)::CSNK1E-RBX1-BRCA1-RP4-691N24.1-SPERT, Shortest 
path(4)::CSNK1E-RBX1-TP53-EIF4E2-SPERT, Shortest path(4)::CSNK1E-
AKAP9-TUBGCP3-EIF4E2-SPERT, Shortest path(4)::CSNK1E-AKAP9-
MAGED1-EIF4E2-SPERT, Shortest path(4)::CSNK1E-RBX1-FBXO25-
EIF4E2-SPERT, Shortest path(4)::CSNK1E-RBX1-UBC-EIF4E2-
SPERT, Shortest path(4)::CSNK1E-AKAP9-UBC-EIF4E2-SPERT, 
Shortest path(4)::CSNK1E-TCEB2-UBC-EIF4E2-SPERT, Shortest 
path(4)::CSNK1E-RBX1-APP-EIF4E2-SPERT, Shortest path(4)::CSNK1E-
RBX1-UBE2L3-EIF4E2-SPERT, Shortest path(4)::CSNK1E-AKAP9-
USHBP1-EIF4E2-SPERT, Shortest path(4)::CSNK1E-AKAP9-PRDM14-
EIF4E2-SPERT, Shortest path(4)::CSNK1E-RBX1-TRIM27-EIF4E2-SPERT, 
Shortest path(4)::CSNK1E-TCEB2-EPAS1-EIF4E2-SPERT, Shortest 
path(3)::CSNK1E-RBX1-TCEB1-SPSB3, Shortest path(3)::CSNK1E-
TCEB2-TCEB1-SPSB3, Shortest path(4)::CSNK1E-RBX1-UBC-MARK1-
CCDC102B, Shortest path(4)::CSNK1E-AKAP9-UBC-MARK1-CCDC102B 
Cycle(4)::CTSB-UBC-CDSN-UBQLN4-CTSB, Cycle(4)::CTSL1-
SERPINB13-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-CST3-CTSB-CSTA-
CTSL1, Cycle(4)::CTSL1-CST7-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-
CSTB-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-PLAU-CTSB-CSTA-CTSL1, 
Cycle(4)::CTSL1-SLPI-CTSB-CSTA-CTSL1, Cycle(6)::CTSL1-UBC-CDSN-
UBQLN4-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-BAT3-CTSB-CSTA-
CTSL1, Cycle(4)::CTSB-UBC-CDSN-UBQLN4-CTSB, Cycle(4)::CTSL1-
SERPINB13-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-CST3-CTSB-CSTA-
CTSL1, Cycle(4)::CTSL1-CST7-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-
CSTB-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-PLAU-CTSB-CSTA-CTSL1, 
Cycle(4)::CTSL1-SLPI-CTSB-CSTA-CTSL1, Cycle(6)::CTSL1-UBC-CDSN-
UBQLN4-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-BAT3-CTSB-CSTA-
CTSL1, Cycle(4)::CTSB-UBC-CDSN-UBQLN4-CTSB, Cycle(4)::CTSL1-
SERPINB13-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-CST3-CTSB-CSTA-
CTSL1, Cycle(4)::CTSL1-CST7-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-
CSTB-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-PLAU-CTSB-CSTA-CTSL1, 
Cycle(4)::CTSL1-SLPI-CTSB-CSTA-CTSL1, Cycle(6)::CTSL1-UBC-

CDSN-UBQLN4-CTSB-CSTA-CTSL1, Cycle(4)::CTSL1-BAT3-CTSB-
CSTA-Cycle(5)::ABCC1-SLC6A4-PLA2G12B-ACE2-ADAM8-ABCC1, 
Cycle(3)::ACE2-CD276-CARD17-ACE2, Cycle(5)::ABCC1-SCN2A-
WDFY3-ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-TGFB1I1-ALOXE3-
ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-ACSL5-TCERG1-ZCRB1-CYLD-
ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-PANK1-SMAD6-ZCRB1-CYLD-
ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-DAPP1-ASTL-ACE2-ADAM8-
ABCC1, Cycle(3)::ABCC1-CACNA1G-PRIMA1-ABCC1, Cycle(3)::ABCC1-
SLC35B3-FCER1G-ABCC1, Cycle(7)::ABCC1-C20ORF152-SPP2-ZCRB1-
CYLD-ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-CHRNB4-ERO1L-ZCRB1-
CYLD-ACE2-ADAM8-ABCC1, Cycle(5)::ACE2-KIR2DL1-RRP9-ZCRB1-
CYLD-ACE2, Cycle(3)::ACE2-FCRLA-MUC4-ACE2, Cycle(5)::ABCC1-
PITPNM3-AMICA1-ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-GGCX-
BXDC5-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-AP1S3-
ATR-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-GAB3-
GLIPR1L2-ACE2-ADAM8-ABCC1, Cycle(3)::ABCC1-ADCK5-PTPDC1-
ABCC1, Cycle(7)::ABCC1-FZD5-RPL14-ZCRB1-CYLD-ACE2-ADAM8-
ABCC1, Cycle(7)::ABCC1-FLOT1-SCYE1-ZCRB1-CYLD-ACE2-ADAM8-
ABCC1, Cycle(3)::ABCC1-CA4-PPP6C-ABCC1, Cycle(7)::ABCC1-DMPK-
LOC441907-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(6)::ACE2-HLA-
DPA1-ERCC4-ZCRB1-CYLD-ACE2, Cycle(5)::ACE2-LYZL4-LOC338611-
ZCRB1-CYLD-ACE2, Cycle(3)::ABCC1-SLC5A12-GSS-ABCC1, 
Cycle(3)::ABCC1-CCT4-MCTP2-ABCC1, Cycle(5)::ACE2-BPI-FAM90A14-
ZCRB1-CYLD-ACE2, Cycle(3)::ABCC1-LRRK1-OPRK1-ABCC1, 
Cycle(7)::ABCC1-PPP1R11-DAZ1-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(7)::ABCC1-EFNA2-DLG5-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(7)::ABCC1-SLC16A4-PSMA6-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(7)::ABCC1-CSNK1G2-MRPL18-ZCRB1-CYLD-ACE2-ADAM8-
ABCC1, Cycle(3)::ABCC1-RUNX3-ASB17-ABCC1, Cycle(3)::ABCC1-
PSCD1-OSBPL5-ABCC1, Cycle(7)::ABCC1-MAP2K3-HELLS-ZCRB1-
CYLD-ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-CCT5-TRGV7-
ACE2-ADAM8-ABCC1, Cycle(3)::ABCC1-HSP90AA5P-TNIK-ABCC1, 
Cycle(3)::ACE2-CXCL5-ELA2-ACE2, Cycle(7)::ABCC1-PTGIR-RPS18-
ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(3)::ABCC1-UGT1A6-
MTNR1A-ABCC1, Cycle(6)::ABCC1-TRAF1-HLA-E-

Drugs in protein-protein SARS-COV-2 networks: a quan-
tum learning visualization data analysis

The SARS-Cov-2 Spike protein structure consists of three chains or 
protomers (A, B, and C chains) of which the chain A is given in the so-called 
“Up” state of its RBD (6vsb.pdb), and chains B and C are in their “Down” 
state. We energetically mapped the interchain interactions “Up-Down” and 
“Down-Down” and specific domain interactions (intrachain interactions) for 
the Up and Down state protomers, including S1 and S2 domain interactions 
and sub domains of S1 that include the RBD domain. In addition, following 

Figure 3. The SARS-COV-2- NOS3 G894T related network constructed from 
the list of the genes: Lys711 and Arg712 protein that are in contact with the other 

protein and the small molecule.
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our static analysis, we conducted some preliminary molecular dynamics 
studies on a potential “latch” for the Down state protomer. Explicit solvent 
molecular dynamics (MD) simulations of novel coronavirus spike protein 
were performed using the NAMD2 program. We used the CHARMM-Gui with 
the CHARMM36m force field along with TIP3P water molecules to explicitly 
solvate the proteins and add any missing residues from the experimental 
structure files. Simulations were carried out maintaining the number of 
simulated particles, pressure and temperature (the NPT ensemble) constant 
with the Langevin piston method specifically used to maintain a constant 
pressure of 1 atm. We employed periodic boundary conditions for a water 
box simulation volume as well as the particle mesh Ewald (PME) method 
with a 20 Å cutoff distances between the simulated protein and water 
box edge. The integration time step was 2 femtoseconds with our protein 
simulations conducted under physiological conditions (37°C, pH of 7.4, 
physiological ionic strength). By intersecting the structural protein-protein 
and protein as templates the high-resolution crystal structure of 3CLpro 
(PDB ID: 6LU7), PLpro (PDB ID: 6W9C), RdRp (PDB ID: 6M71), nsp15 (PDB 
ID: 6VWW) into Pipeline for the comparison of SARS-COV-2-NOS3 G894T 
protein drug Azathioprine Chloroquine, Bleomycin, Colchicine, Cycloserine, 
Cyclosporine, Eflornithine, Everolimus, Histrelin, Infliximab, CTSL, FURIN, 
TMPRSS2, ACE2, DPP4, SLC6A, MASTL, AFM, CDSN, ORF1, ORF1ab, 
ORF6, ORF8, ORF7a, ORF3a, ORF7b, APPS, CPSB, RECEUP, FUR, 
PACE, PCSK3, SPC1 ADABP, ADCP2, CD26, DPPIV, TP103 protein-ligand 
networks above, we observed that many small molecules, including several 
approved drugs, could potentially compete with other proteins for binding 
at interaction sites.

In Figure 4, Pipeline for the comparison of SARS-COV-2-NOS3 G894T 
protein-protein and AZATHIOPRINE, CHLOROQUINE, BLEOMYCIN, 
COLCHICINE, CYCLOSERINE, CYCLOSPORINE, EFLORNITHINE, 
EVEROLIMUS, HISTRELIN, INFLIXIMAB, CTSL, FURIN, TMPRSS2, 
ACE2, DPP4, SLC6A, MASTL, AFM, CDSN, ORF1, ORF1ab, ORF6, ORF8, 
ORF7a, ORF3a, ORF7b, APPS, CPSB, RECEUP, FUR, PACE, PCSK3, 
SPC1 ADABP, ADCP2, CD26, DPPIV, TP103 protein-ligand analyses. A 
General pipeline: the structures for PLIs are downloaded from PDB and 
those for PPIs from Interactome3D. We use the BioJava library to extract 
to the enzyme’s pocket via pi-cation intermolecular bonding with Lys711, 
protein-protein and protein-ligand contacts. Finally, we calculate the 
intersection between PPI and PLI contacts to identify the drugs that may 
interfere with the PPIs. Visualization and analyses with IGB/MI-Bundle pi-
pi stacking with His342, and pi-alkyl interaction with Ala579: we select a 
gene of interest in IGB and run the plugin twice: 1) on interactome 3D, 
with the PPI option, 2) on PDB, with the small molecule of Azithromycin 
where all residues of the selected with the enzyme, particularly between 
the carbonyl oxygens of the pyrazinoquinozolinedione core with DDX1ID: 
1653, DEAD-box helicase 1 [Homo sapiens (human)], Chromosome 
2, NC_000002.12 (15591868..15631101), DBP-RB, UKVH5d 6012 the 
RIG-I, RIG1, RIGI, RLR-1, SGMRT2-response pathway. Purple rectangles 
demonstrate the quick-tip obtained by mouse-overs of the edge between 
select item 1654DDX3X, ID: 1654, DEAD-box helicase 3 X-linked [Homo 
sapiens (human)], Chromosome X, NC_000023.11 (41333308..41364472), 
CAP-Rf, DBX, DDX14, DDX3, HLP2, MRX102, MRXSSB300 and DDX39A, 
ID: 10212, DExD-box helicase 39A [Homo sapiens (human)], and the 
nodes DDX38, PRP16, PRPF16, RP84 and AGS7, Hlcd, IDDM19, MDA-5, 
MDA5, RLR-2, SGMRT1 respectively. Most integration data are available 
only after the node has been queried against the databases of the Shortest 
path(6)::CSNK1E-TCEB2-USP52-ERC1-YWHAG-CRTC3-NEDD1 Shortest 
path(6)::CSNK1E-RBX1-TP53-WDR68-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-RBX1-UBC-WDR68-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-AKAP9-UBC-WDR68-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-TCEB2-UBC-WDR68-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-RBX1-APP-WDR68-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-AKAP9-RNF2-WDR68-YWHAG-CRTC3-NEDD1, 
Shortest path(6)::CSNK1E-RBX1-CUL4A-WDR68-YWHAG-CRTC3-
NEDD1, Shortest path(6)::CSNK1E-RBX1-SMAD3-WDR68-YWHAG-
CRTC3-NEDD1, Shortest path(6)::CSNK1E-RBX1-COPS6-WDR68-
YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-TCEB2-COPS6-

WDR68-YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-RBX1-
DDB1-WDR68-YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-RBX1-
NEDD8-WDR68-YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-
TCEB2-NEDD8-WDR68-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-TCEB2-EPAS1-WDR68-YWHAG-CRTC3-NEDD1, 
Shortest path(6)::CSNK1E-RBX1-CUL5-WDR68-YWHAG-CRTC3-NEDD1, 
Shortest path(6)::CSNK1E-TCEB2-CUL5-WDR68-YWHAG-CRTC3-NEDD 
1, Shortest path(6)::CSNK1E-RBX1-TP53-TNRC15-YWHAA-CRTC3-
NEDD, Shortest path(6)::CSNK1E-AKAP9-BMI1-TNRC15-YWHAA-
CRTC3-NEDD, Shortest path(6)::CSNK1E-AKAP9-TUBGCP3-TNRC15-
YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-RBX1-UBC-TNRC15-
YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-AKAP9-UBC-TNRC15-
YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-TCEB2-UBC-TNRC15-
YWHAA-CRTC3-NEDD1, Shortest path(6)::CSNK1E-RBX1-ELAVL1-
TNRC15-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-RBX1-UBC-
MARK1-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-AKAP9-UBC-
MARK1-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-TCEB2-UBC-
MARK1-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-RBX1-UBC-
DDIT4-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-AKAP9-UBC-
DDIT4-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-TCEB2-UBC-
DDIT4-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-RBX1-CUL4A-
DDIT4-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-RBX1-DDB1-
DDIT4-YWHAA-CRTC3-NEDD1, Shortest path(6)::CSNK1E-RBX1-BTRC-
DDIT4-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-RBX1-TP53-
EIF4E2-YWHAA-CRTC3-NEDD1, Shortest path(6)::CSNK1E-AKAP9-
TUBGCP3-EIF4E2-YWHAA-CRTC3-NEDD, Shortest path(6)::CSNK1E-
AKAP9-MAGED1-EIF4E2-YWHAA-CRTC3-NEDD1 Cycle(7)::ABCC1-
LAT2-OAS3-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-
SSTR5-RECQL5-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-
CAMK1G-IGHA1-ACE2-ADAM8-ABCC1, Cycle(3)::ACE2-MEP1B-
LAMA4-ACE2, Cycle(3)::ABCC1-PLEKHN1-MAP1A-ABCC1, 
Cycle(7)::ABCC1-KTI12-DNAJC13-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(5)::ACE2-PHF23-MBD4-ZCRB1-CYLD-ACE2, Cycle(5)::ACE2-
SECTM1-MRPS36-ZCRB1-CYLD-ACE2, Cycle(3)::ABCC1-PRKX-
DGKK-ABCC1, Cycle(5)::ABCC1-TCL1A-NEXN-ACE2-ADAM8-ABCC1, 
Cycle(7)::ABCC1-PKHD1-MRPL36-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(5)::ABCC1-CLDN1-PSAP-ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-
VAMP5-HHIP-ACE2-ADAM8-ABCC1, Cycle(7)::ABCC1-IQSEC1-
PPP1R10-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(5)::ACE2-, Shortest 
path(6)::CSNK1E-RBX1-NFKBIA-ERC1-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-RBX1-CUL3-ERC1-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-TCEB2-CUL3-ERC1-YWHAG-CRTC3-NEDD1, Shortest 
path(6): :CSNK1E-RBX1-TP53-HECTD1-YWHAG-CRTC3-NEDD1, 
Shortest path(6)::CSNK1E-AKAP9-BMI1-HECTD1-YWHAG-CRTC3-
NEDD1, Shortest path(6)::CSNK1E-AKAP9-TUBGCP3-HECTD1-YWHAG-
CRTC3-NEDD1 Shortest path(6)::CSNK1E-RBX1-UBC-HECTD1-YWHAG-
CRTC3-NEDD1, Shortest path(6)::CSNK1E-AKAP9-UBC-HECTD1-
YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-TCEB2-UBC-
HECTD1-YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-RBX1-
HSPB1-HECTD1-YWHAG-CRTC3-NEDD1, Shortest path(6)::CSNK1E-
RBX1-FBXW11-GBF1-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-RBX1-UBC-GBF1-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-AKAP9-UBC-GBF1-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-TCEB2-UBC-GBF1-YWHAG-CRTC3-NEDD1, Shortest 
path(6)::CSNK1E-AKAP9-PRKACB-WDR68-YWHAG-CRTC3-NEDD1, 
Shortest path(6)::CSNK1E-AKAP9-PRKACA-WDR68-YWHAG-CRTC3-
NEDD1ZDHHC19-TERT-ZCRB1-CYLD-ACE2, Cycle(5)::ABCC1-APBA1-
CMA1-ACE2-ADAM8-ABCC1, Cycle(5)::ABCC1-GRIN3B-CNTF-ACE2-
ADAM8-ABCC1, Cycle(3)::ACE2-CPN1-HMCN2-ACE2, Cycle(5)::ABCC1-
PARD3-PDGFA-ACE2-ADAM8-ABCC1, Cycle(3)::ABCC1-CD81-
CBS-ABCC1, Cycle(7)::ABCC1-TRAFD1-SYT5-ZCRB1-CYLD-ACE2-
ADAM8-ABCC1, Cycle(5)::ACE2-BCAS1-BZW2-ZCRB1-CYLD-ACE2, 
Cycle(7)::ABCC1-UPK3A-PTGES3-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(7)::ABCC1-NEK10-THRAP3-ZCRB1-CYLD-ACE2-ADAM8-ABCC1, 
Cycle(3)::ACE2-IL1RL2-DPP6-ACE2, Cycle(7)::ABCC1-MMD-C21ORF2-
ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(3)::ABCC1-LOC731231-
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UGT2B28-ABCC1AAR2, 7AAP_D, 7AAP_C, 7AAP_B, 7AAP_A, 6ZRU_A, 
6ZRT_A, 7K40_A, 7K3T_A, 7K1O_C,7K1O_B, 7K1O_A, 7K1L_B, 7K1L_A, 
7JZU_B, 7JZN_C, 7JZN_B, 7JZN_A, 7JZM_B, 7JZL_B, 7JZL_C, 7JZL_A, 
7JX6_B, 7JX6_A, 7JKV_B, 7JKV_A, 7D1O_A, 7CAK_C, 7CAK_B, 7CAK_A, 
7CAI_C, 7CAI_B, 7CAI_A, 7A98_C, 7A98_B,7A98_A, 6ZXN_C, 6ZXN_B, 
6ZXN_A, 7A97_C,, 7A97_B, 7A97_A, 7A96_C, 7A96_B, 7A96_A, 7A95_C, 
7A95_B,7A95_A, 7A94_C, 7A94_B, 7A94_A, 7A93_C, 7A93_B, 7A93_A, 
7CMD_D, 7CMD_C, 7CMD_B, 7CMD_A, 7CJD_C, 7CJD_B, 7CJD_A, 
7CJD_D, 6ZOK_j, 6ZOJ_j, 6XMK_B, 6XMK_A, 6Z97_C, 6Z97_B, 6Z97_A, 
6YOR_A, 6YOR_E, 7JZ0_Dl, 7JZ0_C, 7JZ0_B, 7JZ0_A, 7JYY_D, 7JYY_C, 
7JYY_B, 7JYY_A, 6XDH_A, 7JYC_A, 7JU7_A, 6X2A_C, 6X2A_B, 6X2A_A, 
6WZQ_D, 6WZQ_C, 6WZQ_B, 6WZQ_A, 6WZO_D, 6WZO_C, 6WZO_B, 
6WZO_A, 6WXD_B, 6WXD_A, 6WTM_B, 6WTM_A, 6WTK_A, 6WTJ_A, 
6W9Q_A, 6M3M_D, 6M3M_C, 6M3M_B, 6M3M_A, 7JUN_A, 7JME_A, 
7CTT_D, 7CTT_C, 7CTT_B, 7CTT_A, 7CJM_B, 7CE0_D, 7CE0_C, 
7CE0_B, 7CE0_A, 7CDZ_D, 7CDZ_C, 7CDZ_B, 7CDZ_A, 7CBT_B, 
7CBT_A, 7C8D_B, 7C8B_A, 7C6U_A, 7C6S_A, 7C2Y_B, 7C2Y_A, 
7C2Q_B, 7C2Q_A, 6XF6_C, 6XF6_B, 6XF6_A, 6XF5_C, 6XF5_B, 6XF5_A, 
6ZWV_C, 6ZWV_B, 6ZWV_A, 6XEY_C, 6XEY_B, 6XEY_A, 6XKL_C, 
6XKL_B, 6XKL_A, 6XCN_E, 6XCN_C, 6XCN_A, 6XCM_C, 6XCM_B, 
6XCM_A, 6XDG_E, 7C2J_B, 7C2J_A, 7C2I_B, 7C2I_A, 6WEY_A, 7JRN_J, 
7JRN_A, 7JR4_A, 7JR3_A, 7JPE_B, 7JPE_A ACE2-ADAM8-ABCC1, 
Cycle(5)::ACE2-EMILIN3-FAM96A-ZCRB1-CYLD-ACE2, Cycle(7)::ABCC1-
CDK7-CDC40-ZCRB1-CYLD-.

In the list of partners of Lys711 and Arg355, we found the Cluster of 
the Colchicine, Baricitinib, Efornithine, Umifenofir, Hydroxychloroquine, 
Azathioprine, Cycloserine and Linoleic acid Drugs which were identified 
during screening of a compound diversity set performed by the Bio-
genetoligandorol TM cluster of algorithms. The residues on the intersection 
track (Lys711 and Arg355/SARS-CoV2 PLpro and Lys711 and Arg355/
Colchicine, Baricitinib, Efornithine, Umifenofir, Hydroxychloroquine, 
Azathioprine, Cycloserine and Linoleic acid) are the Lys711 and Arg355 
residues that Remdesivir shields from Hydrochloroquine. These residues 
are Phe19, Trp23, and Leu26, which are located in an alpha-helical region of 

the SARS-CoV2 PL pro N terminus that binds to the N-terminal Lys711 and 
Arg355 hydrophobic pocket [17]. The scaffold of the Colchicine, Baricitinib, 
Efornithine, Umifenofir, Hydroxychloroquine, Azathioprine, Cycloserine and 
Linoleic acid small molecules target these three critical SARS-CoV2 PLpro 
residues; the compound therefore competes with endogenous SARS-CoV2 
PL pro for binding to Lys711 and Arg355. In the absence of a structure 
between Lys711 and Arg355 and SARS-CoV2 PL pro and knowing that 
the combination of the Colchicine, Baricitinib, Efornithine, Umifenofir, 
Hydroxychloroquine, Azathioprine, Cycloserine and Linoleic acid small 
molecules disrupts this interaction, it would have been possible to exploit our 
strategy to infer some of the contact residues between Lys711 and Arg355 
and SARS-CoV2 PLpro. Lys711 and Arg355 are involved in three additional 
interactions for which a structure is available. We created a new track to 
display the contacts with each of those: Lys711 and Arg355, and SARS-
CoV2 PL pro. Interestingly, the Lys711 and Arg355 homo-dimerization site 
intersects with the Lys711 and Arg355-Colchicine, Baricitinib, Efornithine, 
Umifenofir, Hydroxychloroquine, Azathioprine, Cycloserine and Linoleic 
acid interface, suggesting that they may also interfere with Lys711 and 
Arg355 homodimerization.

Conversely, the contacts that Lys711 and Arg355 makes with the cluster 
of the Colchicine, Baricitinib, Efornithine, Umifenofir, Hydroxychloroquine, 
Azathioprine, Cycloserine and Linoleic acid drugs and SARS-CoV2 
PL pro are distinct from the ones with the Colchicine small molecule: 
The Lys711 and Arg355/Colchicine, Baricitinib, Efornithine, Umifenofir, 
Hydroxychloroquine, Azathioprine, Cycloserine and Linoleic acid and 
Lys711 and Arg355/SARS-CoV2 PLpro interactions may not be affected by 
this ligand, suggesting an edgetic effect of this compound. Our prediction 
that Remdesivir does not interfere with the Lys711 and Arg355/SARS-CoV2 
PLpro interaction is supported by data showing that Lys711 and Arg355 and 
SARS-CoV2 PLpro co-immunoprecipitate following Colchicine, Baricitinib, 
Efornithine, Umifenofir, Hydroxychloroquine, Azathioprine, Cycloserine and 
Linoleic acid treatment, which is consistent with Darunavir, Azithromycin 
and Linoleic acid-stimulated, Lys711 and Arg355-dependant degradation of 
SARS-CoV2 PL pro [28, 30] .

Quantum Circuit, Binding free energy calculation and In 
Silico Screening Inverse Molecular Docking Algorithm

Inverse Molecular docking calculations were completed using 
Ligandorol TM® docking suits (Bio-genetoligandorol TM, Release 2019-
1, Platform Windows-x64) using the Bio-genetoligandorol TM workflow. 
This workflow utilized three docking precisions, HTVS, SP, and XP, which 
yielded the top 10% of hits for each binding site such as the identification 
of conserved Arg355/SARS-CoV2 PLpro binding pockets. Both proteins 
were prepared by restrained minimization using force field OPLS3e. The 
grid sites were created using Glide® receptor grid generator with docking 
length of 20 Å. Grids centers were determined from active resides on 
target protein in order to find a pocket combination. Ligands were prepared 
using force field OPLS3e and possible states were generated from pH 7.0 
± 2.0. Docking scores are reported in -57.4 Kcal/mol, the more negative 
the number, the better binding. The surface glycoprotein (Wuhan seafood 
market pneumonia virus) (Sequence ID: YP_009724390.1) structure was 
modeled using Mod Base [29] which utilized modeller [30] for the structural 
modeling. The sequence (NCBI Accession: YP_009724390) was uploaded 
to the mod base interface and was run with the template being SARS spike 
protein receptor binding domain (PDB: 6XS6 SARS-CoV-2 Spike SARS-
COV-2 Main protease PDB: 6LU7 with Unliganded Active Site (2019-NCOV, 
Coronavirus Disease 2019,variant, minus RBD). The sequence identity 
was found to be 73%). The calculation was completed and imported into 
BiogenetoligandorolTM®. The structure was then minimized using the force 
field OPLS3e, the overlay of the pre and post minimized structure can be 
seen in Figure 2. The combination of HPC and high-efficiency platforms that 
enabled our country has the ability to deal with the super-high-throughput 
screening tasks of handling the acute infectious diseases. Selection of 
docking softwares Seven docking softwares were carefully evaluated to 
build consensus strategy, including AUTODOCK [20], VINA [21], DOCK 
[22], PLANTS [23], PSOVINA [24], LEDOCK (http://www.lephar.com) and 

Figure 4. Pipeline for the comparison of  SARS-COV-2-NOS3 G894T protein-
protein and azathioprine chloroquine, bleomycin, colchicine, cycloserine, 

cyclosporine, eflornithine, everolimus, histrelin, infliximab, ctsl, furin, TMPRSS2, 
ACE2, DPP4, SLC6A, MASTL, AFM, CDSN, ORF1, ORF1ab, ORF6, ORF8, 

ORF7a, ORF3a, ORF7b, APPS, CPSB, RECEUP, FUR, PACE, PCSK3, SPC1 
ADABP, ADCP2, CD26, DPPIV, TP103 protein-ligand analyses.
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GOLD [25] . This selection covers a wide variety of conformation search 
algorithm and scoring function (Table 1), thus representing an abundant 
source for optimizing the Bio-genetoligandorol TM consensus protocol. 
The docking calculation was performed on the prepared dataset of 195 
receptors and ligands by using these seven docking softwares based on 
default parameters. The box within the surrounding 12.5 Å of the bound 
ligand was defined as active site. 100 conformations for each ligand versus 
its corresponding active site were produced by each software. The one with 
highest score were selected as the final pose.

Table 1. Total Energy (van der waals forces), Hydrogen Bond electrons and 
Average of eighteen different ligands in observation.

Ligand Total Energy (Van 
der Waals forces)

Hydrogen Bond 
electrons

Average

cav6lu7_02J-
Hydroxychloroquine-0.pdb

-51.6645 0 14.2609

cav6lu7_02J-
Azathioprine-0.pdb

-44.9234 0 18.5263

cav6lu7_02J-
Azithromycin-0.pdb

559.782 0 16.3269

cav6lu7_02J-Baricitinib-0.
pdb

-56.1791 0 14.8846

cav6lu7_02J-Bleomycin-0.
pdb

1619.68 0 19.3646

cav6lu7_02J-Cobicistat-0.
pdb

-3.56578 0 12.9074

cav6lu7_02J-Colchicine-0.
pdb

-67.3893 0 14.2069

cav6lu7_02J-
Cycloserine-0.pdb

-34.8634 0 25.8571

cav6lu7_02J-Darunavir-0.
pdb

169.496 0 13.0789

cav6lu7_02J-
Eflornithine-0.pdb

-38.2115 0 19

cav6lu7_02J-EIDD-2801_
MK-4482-0.pdb

145.787 0 17.0435

cav6lu7_02J-GC376-0.pdb 38.1646 0 8.85294
cav6lu7_02J-Histrelin-0.
pdb

2154.37 0 19.3229

cav6lu7_02J-Linoleic acid-
0.pdb

-31.2701 0 18.5

cav6lu7_02J-
Minocycline-0.pdb

43.9429 0 13.0303

cav6lu7_02J-Remdesivir_
Gilead_-0.pdb

87.8714 0 14.2619

cav6lu7_02J-Ritonavir-0.
pdb

244.512 0 14.04

cav6lu7_02J-Umifenovir-0.
pdb 

-56.0081 0 14.1724

In Figure 5, Quantum circuit of the Bio-genetoligandoirol TM cluster 
of repurposing and hope-re-targeting inverse for molecular docking 
algorithms. Gate nG0 (param) q {hq}; qreg q(3); creg c(3); reset q((0)); 
reset q((0)); reset q((1)); h q((0)); u2(pi/2,pi/2) q((0)); measure q((1)) 
->c((1)); x q((0)); reset q((0)); reset q((1)); u3(pi/2,pi/2,pi/2) q((0)); measure 
q((1))->c((1)); u2(pi/2,pi/2) q((1)); cswap q((0)),q((0)),q((1)); barrier q((0)); 
u2(pi/2,pi/2) q((1)); h q((0)); t q((1)); t q((0)); measure q((0))->c((0)); ch 
q((0)),q((1)); s q((1)); crx(pi/2) q((0)),q((1)); cu1(pi/2) q((0)),q((1)); tdg 
q((1)); sdg q((1)); cy q((0)),q((1)); crz(pi/2) q((0)),q((1)); ch q((0)),q((1)); sdg 
q((0)); u2(pi/2,pi/2) q((1)); ry(pi/2) q((1)); cu3(pi/2,pi/2,pi/2) q((0)),q((1)); tdg 
q((0)); nG0(pi/2) q((1)); crx(pi/2) q((0)),q((1)); cu1(pi/2) q((0)),q((1)); cswap 
q((0)),q((0)),q((1)); swap q((0)),q((1)); cz q((0)),q((1)); rxx(pi/2) q((0)),q((1)); 
u1(pi/2) q((0)); cry(pi/2) q((0)),q((1)); crz(pi/2) q((0)),q((1)); measure q((0)) 
-> c((0)); z q((0));measure q((0)) -c((0)); z q((0)); rx(pi/2) q((0)); rx(pi/2) 
q((0)); u2(pi/2,pi/2) q((0)); rx(pi/2) q((0)); ch q((0)),q((1)); ry(pi/2) q((0)); 
ch q((0)),q((1)); u3(pi/2,pi/2,pi/2) q((0)); cz q((0)),q((1)); ch q((0)),q((0)); 
u1(pi/2) q((0)); swap q((0)),q((1)); sdg q((1)); V = -p+0Uatt-m+12  m | Δ  | 

2-12  s | Δ  | 2-kBTNc ∑ i=1cie-  qi/kBT-1., 18 ∂ S ∂ t'=S2x+S2ySzz+S2x+
S2zSyy+S2y+S2zSxxS2x+S2y+S2z-2SxSySxy2SxSzSxz+2SzSySyzS2x+
S2y+S2z+S2x+S2y+S2zV , 18Sn+1ijk-Snijk:=(  x  2x  y  2y +  z  2z ) Snijk+  
fnijk; equations with spin, the existence of quantum symmetry operators, 
and the presence of conserved charges. In this article, we are concerned 
similarly, for the Euclidean vectors  a and  b  Rn, this operation is giving 
by  a- b, with the efficient Numerical Supercritical entanglement in this local 
system to the area law for quantum matter of the nn(x,y)=(0,0) (1,0) (1,1) 
Mn,m2 (0,0),(n,m),(2n,0)S=2 log2(s)2nπ+12 log2(2πn)+(−12)log2e bits, 
=s/(2s+1) n 00↔ukdk H=Π boundary+∑j=12n−1Πj,j+1+∑j=12n−1Πj,j
+1cross, Πj,j+1≡∑k=1s[|Dkj,j+1Dk|+|Ukj,j+1Uk|+|kj,j+1k|], |k[|00−|ukdk] 
Πboundary≡∑k=1s[|dk1dk|+|uk2nuk|] Πj,j+1cross≡∑k≠i|ukdij,j+1ukdi| 
Πj,j+1cross 00↔ukdi |=1M2n∑mp e2πiAp|mp, Ap  M2n|=(1/
M2n)∑mpe2πiAp → limn→∞M2n|≈FA()≡∫0∞fA(x)e2πixdx, [0,1] (n) (n) (n) 
n H≡H+ FF≡∑i=12n∑k=1s(|dkdk|+|ukuk|), gm|F|gm≈4n+m8s(mn) k = S n i 
+ 1 j k − S n i − 1 j k / 2 h { S y } n i j k = S n i j + 1 k − S n i j − 1 k / 2 h { S z } n i j k = S 
n i j k + 1 − S n i j k − 1 / 2 h { S x y } n i j simulation of the Langevin dynamics 
system. The equations governing the ith atom of an N-body Langevin 
system are: Πj,j+1≡∑k=1s[|Dkj,j+1Dk|+|Ukj,j+1Uk|+|kj,j+1k|], |k[|00−|ukdk] 
Πboundary≡∑k=1s[|dk1dk|+|uk2nuk|] Πj,j+1cross≡∑k≠i|ukdij,j+1ukdi| 
Πj,j+1cross 00↔ukdi |=1M2n∑mp e2πiAp|mp, Ap  M2n|=(1/
M2n)∑mpe2πiAp → limn→∞M2n|≈FA()≡∫0∞fA(x)e2πixdx, [0,1] (n) (n) (n) 
n H≡H+ FF≡∑i=12n∑k=1s(|dkidk|+|ukiuk|), gm|F|gm≈4n+m8s(mn). c ∑ i = 
1 c i e −  q i / k B T − 1 = 0, 9  S = 1 − S  s + S  m . 11 −    S   + 1 − S ¯  2  = 
S  m , 12 ∂ S ∂ t =   S  (     S   S  + V ) , , 19 f n i j k = { − 2 S x S y S x y + 
S x S z S x z + S z S y S y z S 2 x + S 2 y + S 2 z + S 2 x + S 2 y + S 2 z V  
} n i j k  x =  { S 2 y + S 2 z S 2 x + S 2 y + S 2 z } n i j k ,  y =  { S 2 x + S 2 
z S 2 x + S 2 y + S 2 z } n i j k ,  z =  { S 2 x + S 2 y S 2 x + S 2 y + S 2 z } n 
i j k ,  2 x S n i j k = S n i − 1 j k − 2 S n i j k + S n i + 1 j k / h 2  2 y S n i j k 
= S n i j − 1 k − 2 S n i j k + S n i j + 1 k / h 2  2 z S n i j k = S n i j k − 1 − 2 
S n i j k + S n i j k + 1 / h 2 { S x } n i j k = S n i + 1 j + 1 k + S n i − 1 j − 1 
k − S n i + 1 j − 1 k − S n i − 1 j + 1 k / 4 h 2 { S x z } S n i j k = S n i + 1 j k + 
1 + S n i − 1 j k − 1 − S n i + 1 j k − 1 − S n i − 1 j k + 1 / 4 h 2 a n d { S y z 
} n i j k = S n i j + 1 1 + S n i j − 1 k − 1 − S n i j + 1 k − 1 − S n i j − 1 k + 1 / 
4 h 2 . 1 −  x 2  2 x −  y 2  2 y −  z 2  2 z S n + 1 i j k = 1 +  x 2  2 x +  y 2  2 
y +  z 2  2 z S n i j k +  f S n i j k . 21 1 − A x 2 1 − A y 2 1 − A z 2 S n + 1 i j 
k = ( 1 + A x 2 1 + A y 2 1 + A z 2 − A x A y A z 4 ) S n i j k +  f S n i j k , 22 A

x =  x  2 x , A y =  y  2 y , A z =  z  2 z . 23 1 − A x 2 S n + 13 i j k = 1 + A x 
2 + A y + A z S n i j k +  f S n i j k 24 1 − A y 2 S n + 23 i j k = S n + 13 i j k − A y

Before binding free energy calculation, the Sander module in Amber16 
[26] program was used to perform the three-step optimization of the ligand-
receptor complex. Firstly, only waters, ions and hydrogens were allowed 
to move. Secondly, the backbone atoms of the protein were fixed while 
others were allowed to move. Thirdly, all the atoms of the system were free 
to move. In the three optimization process, 2000 steps steepest descent 
method followed by 2000 steps conjugated gradient method were used for 
each ligand-receptor binding system. The RMSD gradient goes from dark 
green (for high-accuracy near-native docking solution with RMSD below 1.0 
Å), to dark (RMSD ≥ 10.0 Å). A docking pose was considered as near-native 
pose once its backbone RMSD is ≤ 2.5 Å. Finally, the binding free enegy ( 
Gbind) is calculated by using the MM/PBSA [17,18] and X-score methods 
[9, 20]. As for the X-score method, it is assumed that the overall binding 
free energy in a protein-ligand binding process can be divided into several 
terms (shown in Equation 1) [21]. Here, Gvdw represents the van der Waals 
interaction between the receptor and the ligand; GH-bond represents the 

Figure 5. Quantum Circuit of the BiogenetoligandoirolTM Cluster of Repurposing 
and Hope-Re-targeting Inverse for molecular docking algorithms.

0.2
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hydrogen bonding between the receptor and the ligand;

G-deformation represents the deformation effect; G-hydrophobic 
represents the hydrophobic effect; G-0 represents a regression constant. 
Gbind value between the receptor and ligand could be calculated simply by 
the X-score software package in Quantifying Magnetic Sensitivity Radical 
Pair Based Compass Quantum Fisher Information.

Equation 1: H=B•(Sˆ1+Sˆ2)+Iˆ•A•Sˆ2, Sˆi=(x,y,z) Iˆs(t)=TrI[U(t)(0)U†(t)], 
I(0)=I/2• P(t′)=dΔM(t′)ΔM=f(t′)dt', ¯s=∫−∞0f(t′)s(t′)dt′=∫0∞f(t)s(t)dt, ∫−∞0f(t′)
dt′=∫0∞f(t)dt=1 ¯s ¯s¯s[0,π/2]¯ss(0)¯sQFI≈∑i=01Re[i12]2(1i11+1i22)+
(i1−i22)2i11+i22, 1ij=i|1|s(0)|j|1 0ij=i|0|s(0)|j|0 |0|1 H1=B0•Sˆ1 Re[i12] i12 
s(0) ¯s Q(t0)={G10,G20,…,Gm0}, Gi0=[i10i20… iP0i10i20iP0],i=1,2,…,m 
12 Q-gate=[cos−sinsincos],{ikt+1=cos*ikt′−sin*ikt′ikt+1=sin*ikt′+cos*ikt′ 
O(m×(N+p)3×l) O(m×(N+p)3×l2) O(m×(N+p)3×l) (rank(k)≥(ikt)2),i=1,2,…
,m;k=1,2,…,N ikt=1 ikt=0(ikt)2ikt|S=12(|10−|01)30%s(0)¯sQFI≈∑i=01k4
Re[i12]2(k2+(Brf)2) 2(1Pi11+1Pi22)+(Pi11−Pi22)2Pi11+Pi22,Pijj=ijj+(−1)
j i i j j i= (Br f )22(k2+(Br f )2 ) ( i11− i22)−Br fk (k2+(Br f )2 ) Im[ i12 ] Im[ i12 ]
i 1 2 s ( 0 ) ¯ s Δ Q F I / Q F I ≡ Q F I ( B r f = 0 ) − Q F I ( B r f = 1 5 0 n T ) Q F I ( B r f = 0 )
OˆOˆΔ2=Δ2Oˆ|dOˆ/d|2Δ2OˆOˆOˆ¯sOˆ=Sˆ2=(Sˆ1+Sˆ2)2Δ

Gbind= Gvdw+ΔGH−bond+Δ n n (x,y)=(0,0) (1,0) (1,1) Mn,m2 
(0,0),(n,m),(2n,0) S=2f0log2(s)2nπ+12log2(2πn)+(−12)log2f0e bits, =s/
(2s+1) n 00↔ukdk

In the MM/PBSA method [30], the free energy of the receptor/protein-
inhibitor binding, ΔGbind, is obtained from the difference between the 
free energies of the receptor/protein-ligand complex_(1,3thiazol5yl)
methyl N[(2S,3S,5S)3hydroxy5[(2R)3methyl2{[methyl({[2(propan2yl)1,
3thiazol4yl]methyl})carbamoyl]amino}butanamido]1,6diphenylhexan2yl]
carbamate,_N[(10S)3,4,5,14tetramethoxy13oxotricyclo[9.5.0.02,7]hex
adeca1(16),2,4,6,11,14hexaen10yl]acetamide_(2S)1[(2R)2[(2R)2[(2R
)3(1benzyl1Himidazol4yl)2[(2R)2[(2R)3hydroxy2[(2R)2[(2R)3(1Himida
zol5yl)2{[(2S)5oxopyrrolidin2yl]formamido}propanamido]3(1Hindol3yl)
propanamido]propanamido]3(4hydroxyphenyl)propanamido]propana
mido]4methylpentanamido]5[(diaminomethylidene)amino]pentanoyl]
Nethylpyrrolidine2carboxamide,_(3R,3aS,6aR)hexahydrofuro[2,3b]fura
n3ylN[(2S,3R)3hydroxy4[N(2methylpropyl)4aminobenzenesulfonamido]
phenylbutan2yl]carbamate,_2{[(4R)4[(7chloroquinolin4yl)amino]pentyl]
(ethyl)amino}ethan1ol,_(9Z,12Z)octadeca9,12dienoicacid,(1,3thiazol5
yl)methylN[(2S,5S)5[(2R)2{[methyl({[2(propan2yl)1,3thiazol4yl]methyl})
carbamoyl]amino}4(morpholin4yl)butanamido]1,6diphenylhexan2yl]
carbamate (Gcpx) and the unbound receptor/protein (Grec) and ligand 
(Glig). The binding free energy (Gbind) was evaluated as a sum of the 
changes in the binding energy (Ebind), solvation entropy (−T Δ Ssol), and 
conformational entropy (−T Δ Sconf) (shown in Equation 2) [13] where Δ 
Ebind is interaction energies between a ligand and a protein, which were 
computed using the Sander modules of the Amber16 program. The entropy 
contribution to the binding free energy (−TΔS) was obtained by using a local 
program developed in our own laboratory [13] Gbind=Δ Ebind−T Δ Ssol−T 
Δ Sconf.

Equation 2: 

.UI=cos1cos2|0000+cos1sin2|0110+sin1cos2|1001+sin1sin2 
|1111.F(p,q)=∑jpjqj 

F (1 ,2 )=Tr121 |g1=cosπ3 |0+s inπ3 |11=cosπ3 |00+s inπ3 |11e-
(t1+t2)/2x=cos1cos2x1-2e-(t1+t2)(1-a)=(2a-1)cos11-2e-t2(1-a)=(2a-1) cos
2Gdeformation+Ghydrophobic+G01

Results

The small molecules of the Azathioprine, Azithromycin Baricitinib, 
Bleomycin, Cobicistat, Colchicine, Cycloserine, Darunavir, Eflornithine, EIDD-
2801_MK-4482, GC376,Histrelin, Linoleic acid,Minocycline,Remdesivir_
Gilead, Ritonavir,Umifenovir interact into the cav6lu7_02J binding cavities 
of the amino acids of the sequences of the V-S-LEU-50, V-M-MET-165 
V-M-GLU-166, V-S-GLU-166, V-M-LEU-167, V-M-PRO-168, V-S-PRO-168, 

V-M-GLN-189, V-S-GLN-189, V-M-THR-190, V-S-THR-190, V-M-ALA-191, 
V-M-GLN-192, V-S-GLN-192, V-M-ALA-193, V-M-ALA-2, V-M-VAL-3, V-S-
VAL-3, V-M-LEU-4. The small molecules of the Colchicine, Umifenofir, 
Hydroxychloroquine, Azathioprine, Cycloserine and Linoleic acid small 
molecules generate an inhibitory docking energy effect (negative docking 
energy values) inside the SARS-CoV-2 Mpro catalytic triad which is made 
up of Cys145, His41, and Asp187 residues, a catalytic water (HOH445) 
which is associated with His41 and Asp187, V-S-ASN-146, V-S-ILE-437, 
V-S-ASP-469, V-M-NAG-2, V-M-NAG-2 through hydrogen bond interaction. 
Initially, His41 abstracts a proton from Cys14, V-S-TYR-313, V-S-GLN-321, 
V-S-PHE-782, V-S-ILE-870, V-S-TRP-886, V-S-GLN-957, V-S-LYS-964, 
V-M-ALA-1056, V-M-HIS-1058, V-S-HIS-1058, V-M-GLY-1059, V-M-
TYR-37, V-S-THR-302, V-M-LEU-303, V-S-LEU-303, V-M-GLY-311, V-M-
ILE-312, V-S-ILE-312, V-M-TYR-313, V-S-TYR-313, The cluster of the 
Minocycline, Remdesivir, EIDD-2801, Darunavir, Ritonavir, Azithromycin, 
Bleomycin, Histrelin co-generate an agonistic effect into the ssame binding 
domains of positive docking energy values. V-M-PRO-665, V-M-GLY-744, 
V-M-ASP-745, V-S-ASP-745, V-S-ARG-765, V-M-ASN-856, V-S-ASN-856, 
V-S-GLN-954, V-S-GLN-957, V-M-ILE-569, V-M-ARG-765, V-S-ARG-765, 
V-M-THR-768, V-M-GLY-769, V-S-VAL-772, V-M-ILE-909, V-S-TYR-1047, 
V-S-ARG-1107, V-S-ASN-1108 making it a better nucleophile (cysteine thiyl 
radical, CysS-) for attack on the carbonyl carbon (C24) of the combination 
of the Colchicine, Baricitinib, Efornithine, Umifenofir, Hydroxychloroquine, 
Azathioprine, Cycloserine and Linoleic acid small molecules.

The V-M-LEU-48, V-M-TRP-104, V-S-TRP-104, Asp187 and HOH445 
anchor the His41 molecule to its correct conformation during the formation 
of transition state V-S-ILE-105, V-M-ILE-119, V-M-VAL-120complexes. The 
reaction is followed by the formation of a tetrahedral intermediate where the 
oxyanion group of the intermediate is stabilized by amide backbone atoms 
of Gly143, Cys145, V-S-PHE-133, V-M-GLN-134, V-M-LEU-241, V-M-LEU-
303and Ser144 residues.

Finally, the ROH product molecule is released from the reaction medium 
by the formation of the stable Cycles of the Cycle(3)::ACE2-LOC440434-
NPTN-ACE2, Cycle(5)::ABCC1-GPRC5A-UNC5A-ACE2-ADAM8-
ABCC1, Cycle(5)::ABCC1-GPR42P-VSTM1-ACE2-ADAM8-ABCC1, 
Cycle(5)::ACE2-TNF-DHX58-ZCRB1-CYLD-ACE2, Cycle(5)::ACE2-
MATN2-ZMAT1-ZCRB1-CYLD-ACE2, Cycle(7)::ABCC1-NAPG-GMNN-
ZCRB1-CYLD-ACE2-ADAM8-ABCC1, Cycle(5)::ACE2-CFC1-FZR1-
ZCRB1-CYLD-ACE2, Cycle(5)::ACE2-VEGFB-LOC402057-ZCRB1-CYLD-
ACE2, Cycle(7)::ABCC1-CYB561-TP53BP1-ZCRB1-CYLD-ACE2-ADAM8-
ABCC1, Cycle(7)::ABCC1-KCNA7-SRPK2-ZCRB1-CYLD-ACE2-ADAM8-
ABCC1 of the Mod-lig-Cys145 V-S-LEU-303, V-M-LYS-304, V-S-LYS-304, 
V-S-SER-305 adduct.

The optimized structure of HCQ was docked in 6lu7 crystal structure, 
the Darunavir, baricitinib, hydroxychloroquine, Remdesivir, Umifenovir, 
Azithromycin, EIDD-2801, Linoleic acid molecules bind to a groove on 
the surface of the PDB:1XAK protein within the sequence of amino acids 
of V-M-GLU-1, V-S-GLU-1, V-M-LEU-2 , V-S-LEU-2, V-M-TYR-3, V-S-
TYR-3, V-M-HIS-4, V-S-HIS-4, V-M-TYR-5, V-S-TYR-5, V-M-GLN-6, V-S-
GLN-6, V-M-GLU-7, V-S-GLU-7, V-M-CYS-8, V-M-VAL-9, V-S-VAL-9, 
V-M-ARG-10 with binding energy -5.4 -85.2507 Kcal/mol. The catalytic 
dyad (His41 and Cys145) interacts with the si-face (under the aromatic 
ring) of the ligand Darunavir, baricitinib, hydroxychloroquine, Remdesivir, 
Umifenovir, Azithromycin, EIDD-2801, Linoleic acid molecules through non-
covalent interaction. The His41 endowed parallel displaced ππ interaction 
with aromatic ring 1 of HCQ and the Cys145 shown S-Hπ interaction 
with aromatic ring 2 of HCQ. The Thr24OG1 located at the entrance of 
the inhibitor Feedforward Motif::SH3GL3-->1269->>SPTAN1 Feedforward 
Motif::SPTAN1-->1269->>SH3GL3, Feedforward Motif::C19ORF66--
>1269->>SUMO2, Feedforward Motif::SUMO2-->1269->>C19ORF66, 
Feedforward Motif::STAT1-->SEC16A->>1269, Feedforward Motif::STAT1-
->SCYE1->>1269, Feedforward Motif::MED10-- >1269->>CDC2, 
Feedforward Motif::CDC2-->1269->>MED10, Feedforward Motif::VCL--
>DICER1->>1269binding site is stabilized by the O21 hydroxyl group of 
HCQ through hydrogen bond interaction (Table 2).
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During simulation, the hydrogen bond interaction between Cys145SG 
and His41NE2 is ranging from 3.1 to 3.3 Å and the average H-bond interaction 
of W1 water center to His41ND1, Arg40NB, His164ND1, V-S-ARG-10, 
V-M-GLY-11, V-M-THR-12, V-S-THR-12, V-M-THR-13, V-M-VAL-14, V-S-
VAL-14, V-M-ILE-15, V-S-ILE-15, V-M-LEU-16, V-S-LEU-16, V-M-LYS-17, 
V-S-LYS-17, V-M-GLU-18, V-S-GLU-18, V-M-PRO-19, V-S-PRO-19 and 
Asp187OD2 atoms are observed to be  3.0-3.3, 3.1-3.4, 2.8-3.4, 2.7-3.2 Å 
respectively (Figure 6). In classical proteases (like chymotrypsin, trypsin or 
elastase), the catalytic triad is made up of an acid, base and a nucleophile 
but in coronavirus main proteases (SARS-CoV-2 Mpro (PDB Id 6lu7), SARS-
CoV Mpro (PDB Id 2zu5) and MERS-CoV Mpro (PDB Id 5wkk)) presence of 
water-mediated Aspartic acid residue along with base (His) and nucleophile 
(Cys) seem to be unique and reflecting the formation of water-mediated 
catalytic triad so, the occupation of W1 water center adjacent to the base 
(His41) and its recognition to Asp187 through Asp187OD2W1His41NE2 
interaction could be an evolutionary change in the catalytic site of CoV-
Mpro for Unknown reasons. During simulation, the Baricitinib, Efornithine, 
Colchicine small molecules interacted within binding sites of the Asp187 the 
V-M-CYS-20, V-S-CYS-20, V-M-PRO-21, V-S-PRO-21, V-M-SER-22, V-S-
SER-22, V-M-GLY-23 LEU B 120, PHE B 210, GLY B 480»,»RIT B 602/
II binding sites V-M LEU 167, V-M PRO 168, V-S PRO 168, V-S GLU166, 
V-M GLU 189 amino acids with the docking energies of: -67.4 -0.329283, 
-2.0362 -3.00244, -4.93533, -10.5595, -8.8859, -4.05623, - 0.664807,-
6.26814, -0.165426, -3.47426, -0.328155, -11.6613, -3.21089, -5.18264, 
Baricitinib with -56.2, -1.31486, -2.65117, -1.99069, -0.900426,-5.14416, 
-6.53615, -4.58126, -3.41317, -6.44081, -0.141376, -4.21058, -0.996135 
-6.29089, -3.22596, -5.39419. Interactions between the Umifenovir and 
Colchicine drugs and its CoV-Mpro-NOS3 protein and gene targets are 
caused by hydrogen bonds, Van der Waals force and π-π interaction, 
which are exerting their interactive forces within less than 4 Angstrom with 
the docking energies of the -56, -0.26217, -1.97983, -2.25351, -2.99982, 
-7.18824, -4.61248, -4.39373, -5.86357, -4.99421, -0.119644, -1.96217, 
-0.630774, -9.93394, -4.81284, -1.57475 to made through the sequence 
of the amino acids of the V-S-PHE-3 V-S-ARG-4 V-M-MET-6 V-S-MET-6 
V-M-ALA-7 V-M-PHE-8 V-S-PHE-8 V-M-PRO-9 V-S-PRO-9 V-M-THR-25 
V-S-ARG-40 V-S-HIS-41 V-M-THR-45 V-M-SER-46 V-S-SER-V-M-PRO-52 
V-M-ASN-53 V-S-ASN-53 V-S-GLU-55 V-M-VAL-125 V-M-TYR-126 
V-M-SER-139 V-M-ASN-142 V-S-ASN-142 V-M-GLY-143 V-S-CYS-V-
M-MET-165 V-S-MET-165 V-M-GLU-166 V-S-GLU-166 V-M-LEU-167 
V-S-VAL-186V-M-ASP-187 V-S-ASP-187 V-S-GLN-189 V-S-THR-199 
V-M-PHE-,V-S-PHE-223, Asp187OD2W1His41ND1/NE2Cys145SGLEU 
B 120, GLY B 480»,»RIT B 602/II (O25) path. The carbonyl oxygen 
(O25) is stabilized by amide backbone atoms of Cys145, Ser144, and 
Gly143 residues where ′0(x) is the new spatially varying band minimum, 
V(x) is the externally applied potential, and  K(x,x ′ )=K0(x−x′ )2+
2√x(t˙)=Ax(t)+Bu(t) x(t˙)=Ax(t)+Bu(t) x(t˙)=Ax(t)+Bu(t) O(NL) W=[AB00], 
x(t˙)=Ax(t)+Bu(t), x˙=Ax+B*u*, M=[100010001000], x˙=Ax+BD*M(MTu), 
minD∑j=1Pdj, dj={0,1},j=1,2,…,P, [] Gi=[i1i2…ini1i2in] gives the Coulomb 
potential between points x and x′. K0 sets the energy scale of the 
interaction and ∫K(x,x′)n(x′)dx′i12+i22+i12+i22=1,i=1,2,…,mGi=[Gi1Gi2], 
{Gi1=[i1,i2,..,ij,..,in]Gi2=[i1,i2,…,ij,..,in],Pen(D)=∑i=1lPeni(D),f(D)=∑j=1
Pdj+Pen(D)=∑j=1Pdj+∑i=1li×(rank(iIN−A,BDM)−N)2, pen(D)=10P*∑i=1
lPeni(D)=50*1≠0,Q(t)={G1t,G2t,…,Gmt},Git=[i1ti2t…iPti1ti2tiPt],i=1,2,…
,m,t=0,2,…,maxgen−1, gives the effective Coulomb potential created as a 
result of the electron density n(x).

Discussion

The hit compounds of the Colchicine, Baricitinib, Efornithine, 
Umifenofir, Hydroxychloroquine, Azathioprine, Cycloserine and Linoleic 
acid drugs reported here have potential to inhibit the 6LU7 crystal structure 
of COVID-19 main protease variant but are not guaranteed to have any 
activity; however, this lays the groundwork for computational drug discovery 
for new compounds to reduce transmission and symptoms of SARS-CoV-2. 
We have used structural homology modeling through the use of computer, 
quantum mathematical, Euclidean geometrics and statistical methods to 
determine a dock-able target for the SARS-CoV-2 spike protein and have 
utilized the newly characterized SARS-CoV-2 Spike SARS-COV-2 Main 
protease PDB:6LU7 with Unliganded Active Site (2019-NCOV, Coronavirus 
Disease 2019, variant in our docking models. It is also exciting to uncover 
that this combination of drugs may also be potentially used for the treatment 
of SARS-CoV-2 infections. At this point it is important to be mentioned 
that the Biogenea Pharmaceuticals Ltd for Pharmaceutical Biotechnology 
Drug Design laboratory celebrates with people, procedures, and vision 
that bring new drugs into the market through Molecular Biochemistry and 
Molecular Pharmacology. We target the development and manufacture 
of new drugs like a small molecule, a nano-ligand targeted COVID-
19-D614G mutation using Topology Euclidean Geometrics for Toxicity 
Predictive Neural Networks: A Quantum Gravitational for Persistent 
Homology Pharmacophoric Kinematic Algorithm (Q-Hypatia) in Practice. 
Such medicines draw on talent passion and experience of a wide range of 
professionals. The goal of Grigoriadis Ioannis and partners is to bring this 
group into the limelight and, in doing so, to integrate the entire process, 
from the registration of an Investigational New Drug (IND) or Pharmaco-
biochemistry License Application (BLA) through to the market launch of new 
therapies and beyond. Our new computerized quantum algorithms have led 
us to more than one groundbreaking Pharmaco-biochemical results that are 
to be published in the very near future time (Figures 7,8 and 9).

Figure 6. Cluster analysis of the docking interactions of the azathioprine, 
azithromycin baricitinib, bleomycin, cobicistat, colchicine, cycloserine, darunavir, 
eflornithine, EIDD-2801_MK-4482, GC376, histrelin, linoleic acid, minocycline, 

remdesivir_gilead, ritonavir, umifenovir.

Figure 7. 3D docking interactions of the the azathioprine, azithromycin, baricitinib, 
bleomycin, cobicistat, colchicine, cycloserine, darunavir, eflornithine, EIDD-

2801_MK-4482, GC376, histrelin, linoleic acid, minocycline, remdesivir_gilead, 
ritonavir, umifenovir into the binding sites of the 6YB7 SARS-CoV-2 main protease 

PDB:6LU7 with unliganded active site (2019-nCoV, coronavirus disease 2019, 
COVID-19) sequence of amino acids.

Page 11 of 13



Clin Schizophr Relat Psychoses, Spl 1, 2020Grigoriadis JI.

Conclusion

At the end of block-buster era for drug discovery, drug repurposing 
is a promising approach to address the productivity gap„ that the global 
pharmaceutical giants are currently facing, which will improve the drug-
discovery productivity. In this original article we applied Inverse docking 
protocols with the integration of various COVID-19 disease databases, 
to perform data mining for the de novo drug repurposing, in the potential 
binding cavities of a set of clinically relevant macromolecular NOS3 targets. 

Figure 8. 3D Docking interactions of the the azathioprine, azithromycin, baricitinib, 
bleomycin, cobicistat, colchicine, cycloserine, darunavir, eflornithine, EIDD-

2801_MK-4482, GC376, histrelin, linoleic acid, minocycline, remdesivir_gilead, 
ritonavir, umifenovir into the binding sites of the 6YB7 SARS-CoV-2 main protease 

PDB:6LU7 with unliganded active site (2019-nCoV, coronavirus disease 2019, 
COVID-19).

The critical issues related to inverse docking part are the prediction of 
correct binding pose and the estimation of some measure of the binding 
affinity. We have evaluated of several docking methods for inverse docking 
applications since the effectiveness of these methods in multiple target 
identification is unclear. A consensus ORF1a-NOS3-Colchicine, Baricitinib, 
Efornithine, Umifenofir, Hydroxychloroquine, Azathioprine, Cycloserine 
and Linoleic acid driven inverse docking protocol was developed, which 
has a~10% enhancement in success rate compared with the best single 
docking algorithm. Finally, an comprehensive web platform by applying AI 
deep learning models was designed based on our Bio-genetoligandorol 
TM protocol for drug repurposing to significantly reduce user time for 
data gathering and multi-step analysis without human intervention, which 
consists of the following three tools: 

• An automated consensus inverse docking workflow program, 

• A compound database containing 2086 approved drugs with original 
therapeutic information, 

• A known target database containing 831 protein structures from PDB 
covering 30 therapeutic areas. 

Differentiated with other tools, Bio-genetoligandorol TM outperforms 
other standalone algorithm in a better accuracy and more efficient way in 
summary. We anticipate that the Colchicine drug could interact synergistically 
with the active compounds of Umifenofir, Hydroxychloroquine, Azathioprine, 
baricitinib, Efornithine, Cobicistat, Cycloserine and Linoleic acid but 
not with the Minocycline, Remdesivir, EIDD-2801, Darunavir, Ritonavir, 
Azithromycin, Bleomycin, Histrelin drugs to kill SARS-COV2 viruses.
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